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Abstract 

This paper presents a robust approach for the au- 
tomatic classification of sonar pictures. The clas- 
sification task deals with t h e  segmentation of the 
sea-bottom thanks t o  the  observations given by a 
high resolution sonar antenna. The originality of 
our approach consists in describing the  seabed fea- 
tures with statistic multiresolution parameters. The 
obtained statistic parameters form a feature vector 
corresponding t o  a scale parameter description. A 
discriminant analysis allow us t o  significatively de- 
crease t h e  size of the  vectorial space corresponding 
t o  the  feature vectors and t o  generate a n  optimal 
subspace. A training set of 300 sonar observations 
has been used t o  reduce the  feature space. This 
method has been validated on real world sonar pic- 
tures, with strong speckle noise. 
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1 Introduction 

tion, major features of the  high resolution sonar im- 
ages a re  presented. In the  same part, a compilation 
of the  main approaches used for texture classifica- 
tion is briefly pointed out. In section 3, we specify 
the  multiresolution parameter extraction, based on 
statistic properties of the wavelet coefficients. This 
parameters have the good property t o  b e  invariant 
for rotation transformation as we will see. Finally, 
in section 4, we will illustrate on some examples, the  
benefit we can get from our method associated with 
a K-NNA (K Nearest Neighbors Algorithm). 

2 Seabed classification 

Nowadays, high frequency sonar are  performing 
systems, able t o  generate accurate picture of the  sea- 
bottom. These sonar images are  obtained with a n  
antenna composed of hydrophones measuring pres- 
sure variations. On the  pictures thus generated , one 
can observed sea bottom reverberation and  shadow 
zones. T h e  last ones correspond t o  areas acoustically 
masked by the  objects lying on the  sea-bottom or by 
the  relief of the  seabed. Here we focus on the auto- 
matic classification of the  sea-bottom into 4 classes: 
pebble area, dune area, ridge area and sand area (cf. This article deals with t h e  segmentation problem 
figure 1). The  sonar frequency is approximately of of high resolution sonar images. We propose a para- 
500KHz,  and the  images are  of large size, typically metric method, with rotation invariance property, 

t o  classify different kind of seabeds observed with a 
6000 by 2000 pels. The  sonar resolution allows, for 
these frequencies, t o  obtain a resolution cell near 

high resolution sonar antenna. This approach has 
for originality t o  use together a discriminant analy- from 100cm2. I t  means that  the  classification of the  

four textures should b e  done at different scales. This sis on the  feature parameters and a multiscale analy- 
paper aims t o  propose such a n  automatic and robust sis on the  sonar images. This method is supervised 
classification processing chain. in the  sense that  i t  needs a training set allowing 

t o  generate an optimal subspace from the  original 
feature space by favoring decorrelated parameters. 
Each sonar image is described by a set of feature Texture analysis in image processing is a com- 
parameters called feature vector. These parameters plex problem. Nevertheless, texture modelization 
are  extracted from a multiresolution analysis on a and analysis framework can be approached under 
wavelet basis. The  main difficulty in this sonar im- structural or statistic approaches 1161. In fact, one - - . . 
age segmentation problem approach lies in the  pres- 
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will be organized as follows. In the following sec- vided u s  with numerous real SONAR. 



3.1 Multiresolution Analysis 

Wavelets produce a natural multiresolution of 
every image, including the all-important edges. For 
more details about the  mathematical theory, the  
reader will find an interesting compilation in [lo]. 
A beautiful connection between wavelets and filter 
banks was discovered by S.Mallat [9] in 1988. The  
discovery, by I.Daubechies, of discrete orthogonal 
wavelets of finite length [14], having good proper- 
ties (in term of smoothness, symmetry, inner prod- 
uct, accuracy of approximation, number of vanishing 
moments...), opened then new perspectives for im- 

Table 1: Sonar pictures of the  seabed obtained with age representation. 
a high resolution sonar. The  size of each picture is 
768 by 512 pels 

can distinguish three main approaches for paramet- 
ric description of textured pictures in the  literature: 
1) the  statistic approach providing an  image descrip 
tion according t o  its stochastic properties [1][4]; 2) 
frequency approaches, or more generally all repre- 
sentations including a space change allow t o  trans- 
pose the  problem toward a well-fitted space [3][8]; 
3) geometric approach permits an  explicit descrip 
tion of the  shapes the  authors are looking for in 
textured images [ l l ] .  Both type of analysis have 
advantages and drawbacks. In our case, information 
a t  different scales appears on the sonar images. For 
instance, in the case of dunes of sand, the  shadow 
shapes are spreading on few meters; whereas for ar- 
eas with ridges of sand the  shadow shapes are three 
order of magnitude smaller. We firstly define in the  
next section, the  way we adopted to extract statis- 
tic multiresolution parameters (cf section 3) before 
t o  present the  results obtained on real high resolu- 
tion sonar pictures (cf section 4). 

3 Multiscale approach 

Figure 1: Scaling fonction and wavelets from it- 
eration of the  lowpass filter. Ho stands for the  
lowpass filter, while Hl is the  highpass filter. In 
the  case of biorthogonal filters, we have a perfect 
decomposition allowing a perfect reconstruction : 

F =  A1+D1 z A 2 + ~ 2 + ~ 1  - A 3 + D 3 + D 2 + D 1  

Scaling function and wavelets have remarkable 
properties. They inherit orthogonality or biorthog- 
onality, from the  filter bank. Because of the  re- 
peated rescaling that produce them, wavelets de- 
compose an image into details DL at all scale 1 
for 1 E [I, L]. In figure 1, we show the decom- 
position of an  image F with analysis filters, up 
t o  t h e  third scale level. We have compared the  

Multiresolution approach has been motivated by quality of the  decomposition on three biorthoge 
the difficulties we faced with, about the  size of the  nal basis : coiflets, symlet and daubechies basis(l41. 
shape composing the  texture: in a area dunes of The  choice of the  best basis has been estimated on 
sand, large shadow zones succeed t o  large reverber- 
ation areas that  should b e  locally classified as sand 
class. Otherwise, for small analysis windows, it is 
difficult t o  distinguish pebble areas from ridge ar- 
eas. Last but not least, the  managing of the  bound- 
ary between zones involves analysis widows of small 
sizes. All these arguments imply t o  decompose the  
observations in scale in order t o  b e  able t o  increase 
the  robustness of feature extraction. Finally, the  
presence of a strong speckle noise [5] a t  full resolu- 
tion decreases for coarser levels, because of low pass 
filtering. 

real sonar image by using a compression scheme. 
The  best compression rates are  compared accord- 
ing t o  the  following Mean Square Error crite- 
rion : M S E  = xcl CG1 (fij-gij)2where f . ,  '3 

stands for the  original signal and gij is the  re- 
constructed signal after compression (on the detail 
(gL, DL-', ..., DL, ... D') and approximation (AL) 
coefficients). Best results are obtained, according 
t o  the  M S E  criterion, with the  coifiets coefficients 
and a size N = 29 for the  discrete filter lengths. We 
will note cfj the  coefficients of t h e  image projection 
onto this coiflet basis. 



3.3 Discriminant analysis 
1 cij = { ~ ' ( i , j ) }  if 1 < 1 < L The  discriminant analysis consists in the descr ip  

a n d c f j  = { { D L ( i , j ) } ; { ~ ' ( i , j ) } }  i f l = L  tion and then the  classification of individuals, de- 

In this multiscale framework, we obtain a set of coef- 
ficients tha t  corresponds t o  the  image projection to- 
ward different wavelets, in a fine t o  coarse scheme. 
At each scale, all the  information is preserved: it 
means that  the  initial image may always be recon- 
structed (cf figure 1). We propose t o  extract sta- 
tistic properties of these coefficients dj up  t o  the 
third order, in order t o  describe the  image features 
at different scales. 

3.2 Multiscale Statistic Approach 

Let the  following attributes be  extracted beyond 
the  approximation and detail coefficients cfj, at the  
resolution 1 : 

1. Let H' be a measure of the  entropy: 

H' = - C p(cfj) logp(dj) where p (d j )  stands 
if 

for the  probability t o  have a coefficient of value 
d j ;  

2. Let max' b e  a measure of the  highest coefficient 
value: max ' = maxi j  (cfj) 

3. Let jd be  a measure of the  average: 
p' = 1 En Crn c! 

nm r = l  ~ = 1  IJ 

4. Let a' be  a measure of the  standard deviation: 
a 

0' = (& C E l ( S  - P ' ) ~ )  

5. Let Skew' be  a measure of the  third moment:: 

6. Let Kurt '  be a measurement of fourth moment: 

where n.m is the  size of the  c,j coefficient images 
at resolution I .  

T h e  pels of the  observed picture a re  zero-mean 
and reduced in order t o  improve the  robustness of 
the  classification scheme towards experimental con- 
ditions. One can note the  rotation invariant p r o p  
erty of the  extracted multiresolution features. The  
feature vector describing an image i is decomposed 
on L resolution level: a, = (Dl ,  ..., D L ,  ..., DL,  
with DL = [H', max1,p' ,a ' ,  Skew', ~ u r t ' ]  and 
AL = [ ~ ~ , m a x ~ , ~ ~ , a ~ , S k e w " , ~ u r t ~ ] .  In our 
application, we consider L = 3. Then, we obtain 24 
multiresolution statistical parameters for each image 
i. The  parameter vector associated t o  each image i 

t is then of size 24 : si = ( X ~ , J , X , , ~ ,  ..., 

scribed by a large number of parameters, by means 
of a training set (individuals for which we a priori 
know the membership group). This supervised tech- 
nic consists in searching the  optimal linear projec- 
tion generating class clusters in a subspace defined 
by the  training images. This optimization task is 
made with a mean-square based criterion which is 
equivalent t o  the  maximum likelihood criterion in 
the  gaussian case[6]. Nevertheless, in practice, it is 
difficult t o  verify this last assumption and the  fea- 
ture parameters follow a priori any laws. However, 
the  new feature parameters a re  more decorrelated in 
the subspace than in the  initial space. Then the  clas- 
sification task will be  easier, if the  feature parame- 
ters remain discriminant. Of course the  recognition 
rate is not always improved by using more features: 
if you add correlated features or non discriminant at- 
tributes, they obviously increase the noise within the  
feature space without increasing the  performance. 

The  following section validates the  processing 
scheme on a set of test images, providing by different 
sonar antennas, from real world seabeds. 

4 Classification 

On one hand, t o  generate the  training set needed 
for the  feature space reduction, we split the  four 
images (cf figure 1). 300 windows of size 64 by 64 
pels are  thus obtained, on each of them a pyrami- 
dal decomposition is processed up t o  the third or- 
der L = 3. As mentioned earlier, 300 vectors x, 
are deduced. The  discriminant analysis on these 
feature vectors, associated t o  a trace criterion[l5]; 
experimentally lead t o  a space reduction from R24 
t o  IR~. On the other hand, we generate a training 
set from large images, blocked 64 by 64 pels, that  
have t o  be  automatically classified. We observe tha t  
the  distinction between sand-ridge classes and be- 
tween ridgepebble classes will be difficult t o  realize 
because of their proximity (cf. Table 2). 

The classification is based on the K-NNA (K 
Nearest Neighbors Algorithm)[2] [17]. The distance 
between dots in t h e  feature space is computed to find 
a set of K nearest neighbors. The  decision rule is 
simple : one affects t o  one point, the class Ci being 
in the  majority of the  K nearest neighbors. 

4.1 Results on noisy images from the 
real world 

To show the general applicability of the  method, 
we have tested the classification chain on 300 real 
sonar images, coming from a high resolution sonar 



matic processing of massive amounts of data .  Classes 

sand - ridges 
sand - dunes 

sand - pebbles 
ridges - dunes 

r idges  - pebbles 
dune - pebbles 
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5 Conclusion 

This paper have presented a robust approach for 
automatic classification of high resolution sonar im- 
ages. T h e  multiresolution feature method described 
in this article provides reduced space for the  classi- 
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and generate a feature space. We have developed 
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of the  space. In the  mast discriminant subspace, 
we classified sonar images using a K-NNA classi- 
fier. Good recognition rates have been obtained for 
large sonar pictures of the  seabed. The  extracted pa- 
rameters are  invariant for rotation transformations. 
Moreover, they a re  able t o  be  discriminant for tex- 
tures at different scales and  thus, should be  consid- 
ered for other applications, where micro and macro- 
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chain has been validated on a number of high reso- 
lution sonar pictures, demonstrating the  robustness 
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