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Abstract 2 Self-Calibration is Possible 
We propose a method to calibrate a rotating and zooming 

camera without 30  pattern, where the internal parameters In this paper we consider a set of rotating cameras with cam- 

change frame by frame. First, we show that the calibration is era matrices P k  = Kk [Rk 101, where Kk is the camera cali- 

unique up to an orthogonal transformation under the assump- bration matrix of zero skew defined by 

tion that the skew of the camera is zero. The auto-calibration 
is possible by analyzing inter-image homographies computed 
from the matches in the images of the same scene. At least 
four homographies are needed for auto-calibration in gen- 
eral. When we assume that the aspect ratio is known and 
the principal point i s f i e d  then one homography will yield 
camera parameters, and when the aspect ratio is not known 
withfiedprincipal point then two homographies are enough. 
The algorithm is implemented and validated on several sets 
of synthetic data and real image data. 

1 Introduction 

Recently, there have been lots of researches for calibrat- 
ing a camera based only on matches of multiple images. 
They reported algorithms of auto-calibration for fixed inter- 
nal camera parameters [5 ,  2, 91. Applying the techniques 
of Projective Geometry, they showed that it is possible to 
compute the five internal camera parameters when they are 
fixed for all the views. When camera parameters are varying 
from image to image, then under the assumption that at least 
one of five internal parameters is known, auto-calibration is 
possible[3, 4, 61. All these auto-calibration methods require 
that the views be taken at different viewpoints. That is, trans- 
lation is not zero. 

Hartley proposed a self-calibration algorithm given 
matches of images taken by a rotating camera whose inter- 
nal parameters are fixed[l]. One limitation of the work is that 
the algorithm cannot be applied when the images are taken 
by a zooming or auto-focusing camera, which is common in 
video images of sports games like soccer or American foot- 
ball. In this paper, we propose a method to auto-calibrate such 
a rotating and zooming camera so that 3D information can be 
extracted for future analysis. 
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The parameters in Kk, the intrinsic parameters, represent the 
properties of the image formation system: Pk represents focal 
length, yk = ctk/Pk represents the aspect ratio and (xk, yk) 
is called the principal point. 

Note that given a set of images &, ..., ZN taken from the 
same location by cameras with the calibration matrices Kk, 
then there exist 2D projective transformations Hk, taking im- 
age Zo to image Zk, whose matrices are of the form: 

where Rk represents the rotation of the k-th camera with re- 
spect to the 0-th. Also, the inter-image homography can be 
computed from image matches and satisfy the relationship 
uk = H ~ U O  where uk and uo are matching points. 

Using the inter-image homographies Hk's computed from 
image matches, we can find camera matrices Pk = KkRk, 
k = 0, ..., N, that satisfy the relationship Hk = P~P;' = 
K ~ R ~ K ; ' .  Notice that given one such sequence of cam- 
era matrices P k ,  k = 0, ..., N, P k Q  may be also a possible 
choice of camera matrices, where Q is a nonsingular 3 x 3 
matrix, because they also produce the same inter-image ho- 
mographies. Now we need a lemma to go further [4,6]. 

T 
Lemma 1 A camera matrix P = KR = [PI p2 p3] 
represents a zero-skew camera ifand only if 

Due to this lemma, the projective transformation Q3x3 can 
not be arbitrary because every camera matrix should satisfy 
the constraint equation (2). 

Now it remains to show that given a sequence of camera 
matrices P k ,  k = 1, ..., N, which I )  solves the inter-image 
transformation problem and 2) represents zero-skew cameras, 
then the only possible transformations Q 3 ~ 3  that preserve the 
zero-skew camera condition (equation (2)) are the orthogonal 
transformations. 



Denote by Mp the manifold of all 3 x 3 camera matrices 
defined up to scale. Denote by M,, the manifold of all cam- 
era matrices that represent zero-skew cameras. Denote the 
group of all projective transformations, represented by 3 x 3 
matrices, by Gp, Finally, denote by G,, the group of transfor- 
mations that preserve the property in Lemma 1, and the group 
of orthogonal transformations by Go: 

It is clear that the group of orthogonal transformations is con- 
tained in G,,. If G,, = Go then it is possible to calibrate 
cameras uniquely up to orthogonal transformation. 

Theorem 1 Let G,, denote the class of transformations that 
preserve the zero-skew camera condition and Go the group 
oforthogonal transformations. Then 

and 

(r1 x r3)  . (r2 x r3)  

= -d;d: cos 8 sin 8 sin 4 + dqd; cos 8 sin 8 sin 4 
= d; cos 8 sin 8 sin $(-d: + d!) 

= 0. 

That is, RD is a zero-skew calibration matrix if and only if 
d2 = d3. Permutation of the singular values yields dl = 
d2 = d3. Thus, all singular values of Q are equal, which 
means that Q is an orthogonal matrix. 

Note that the matrix Q is related to the selection of the 
camera coordinate system. Therefore, choosing the camera 
coordinate system with respect to an image determines im- 
plicitly the matrix Q. 

Estimation Method 

Gzs = Go. From the equation ( I ) ,  we have 

Proof: It is clear that Go G,,. Now we show that 
Go > G,,. Assume that P represents a zero-skew camera, 
Q a projective transformation in G,,. Then, from the defini- 
tion, P Q  = KRQ can be re-written in the form of K'R' 
where K' is a zero-skew calibration matrix and R' is an or- 
thogonal matrix. Also UQV has this property for every pair 
of orthogonal matrices U and V, since 

Then the number of unknowns is 4N + 4,  given N homo- 
graphies, and the number of equations is 5N because H k  is 
defined and can be computed only up to scale, which means 
that at least four homographies are needed to compute the 
camera parameters. 

If we know the principal points (xk ,  y k ) ,  other calibration 
parameters ( a k ,  P k )  can be computed using a linear equa- 

r l  2k1  
where R" and R"' denote orthogonal matrices. Now, using tions. Now let's define a 3 x 3 matrix C k  = I 1 . By 

singular value decomposition of Q we may write 
multiplying matrices ck1 and Co on the left and on the right 
side of H k ,  respectively, we have principal-point-free version 

D = UQY = 
d2 di] . of the the equation (3), HkKo~@:  = KkK;, from which 

we have five equations to compute the scale factors: 

Suppose that the rotation matrix R is given by 8 degree rota- 
tion about x-axis and by 4 degrees about y-axis (note that the 
rotation R is arbitrary) 

we have 

0 
0 

'cos 4 sin B sin 4 - cos 8 sin 4 
0 cos 4 s i n 4  , 

sin I$ - sin 8 cos 4 cos 8 cos 4 1 
'dl cos 4 d2 sin 8 sin 4 -d3 cos 8 sin 4 

0 d2 cos 4 d3 sin 4 
dl sin 4 -d2 sin 8 cos 4 d3 cos 8 cos 4 1 

Now, according to Lemma 1, RD = [rl  , r2,  r3IT is a zero- 
skew calibration matrix if and only if ( r l  x r 3 ) .  (1-2 x r3)  = 0. 
After some calculation we have 

r l  x r3 = [O, -dld3 C O S ~ ,  -dld2 sin8IT, 
r2 X 1'3 = [d2d3 cos 4 ,  dld3 s in8  sin 4, -dld2 cos 8 sinq5IT 

It means that the scale parameters ( a k ,  P k )  may be param- 
eterized by the principal points, and given principal points 
the scale parameters are linearly computed. Now we define a 
nonlinear error function to find the optimal calibration param- 
eters including the principal points. Using the relationship 

we minimize the following error function: 



Notice that E is a function of principal points. Since the prin- 
cipal points are around image center, a search window may be 
chosen around the image center, and the algorithm proposed 
is: 

1. Set principal points: xk t 3 k  and yk t i j k  

fork  = 0, ..., N. 

2. Compute ak and Pk ,  for k = 0, ..., N. 
3. Compute Rk using equation (7) and the error 

E using equation (8). 

4. if E is smaller than the previous one, record 
the calibration parameters. 

5. repeat 1 - 4 for searching area 

6. The optimal calibration parameters are the 
recorded ones. 

For nonlinear optimization, we have two approaches. One is 
the area searching method searching in the whole or a part 
of image space for the principal points that minimize the er- 
ror function, and the other is the use of a gradient based 
minimization algorithm like conjugate gradient method or 
Levenberg-Maqurdt method. In the latter case, initial values 
may be obtained by assuming that the principal points are im- 
age centers and computing the other calibration parameters 
using the linear algorithm. 

As mentioned previously, we need at least four inter-image 
homographies for computing time-varying calibration param- 
eters. However, the number of homographies can be reduced 
if we make some restrictions on camera models. If we assume 
that the principal point does not move at all in zooming or fo- 
cusing and the aspect ratio is known, only focal lengths will 
vary. In this case one inter-image homography is enough to 
calibrate the camera using the area searching method, which 
will be discussed in Section 4. In Section 5, we generalize 
the model by assuming the aspect ratio is unknown, in which 
case two inter-image homographies are required. Assuming 
that the principal point is fixed, we will use the area searching 
method to find the global minimum. Finally, all the calibra- 
tion parameters are assumed to vary except the skew. This 
case is the most general and we use an iterative optimization 
method like the Levenberg-Maqurdt method. 

4 Fixed principal point with known y 

Provided that the principal point is fixed during the sequence 
and the aspect ratio y is known apriori, then only one homog- 
raphy is needed to compute camera parameters. The calibra- 

tion matrix is now K k  = rf* fk , and the equations (4) 
L 1 J 

- (6) are now of the form: 

However, notice that we should not use the equation 
(9) when the rotation is only about the x-axis or y-axis. 
When the x-axis is the rotation axis, only one equation 
f:(h21h31 + hZ2h32) = -h23h33 among three equations is 
valid. When the y-axis is the rotation axis, the second equa- 
tion f;(hllh31 + hI2h32) = -h13h33 is valid. Details can 
be found in [7] at our web site. This analysis is important be- 
cause the axis of the rotation is usually the x-axis, y-axis or 
the composition of the two axes, and the rotation about z-axis 
is usually small. 

5 Fixed principal point 

The calibration matrix is now assumed that the principal point 
is fixed and the aspect ratio is not known. That is, the cali- 

bration matrix is of the form K k  = [.. A ,I. and two 

homographies or three images are needed to compute the cal- 
ibration parameters as well as rotation angles. At this time, 
one should be careful about the rotation axis. When the rota- 
tion axis is only the x-axis for all the input images, it is im- 
possible to compute the scale factors ak's. Also when the ro- 
tation is about the y-axis, one cannot compute the Pk1s. This 
is due to the special form of the rotation matrices in these two 
cases. When the rotations are about the x-axis, the rotation 
matrices are of the form 

where c = cosOk, s = sinOk and Ok is the rotation angle 
between the 0-th camera and the k-th camera. Notice that 

where 

That is, we have multiple solutions for the calibration param- 
eters that satisfy the equation Hk = K ~ R ~ K ; ' ,  or more 
specifically we cannot determine exact ak's, because if K k  
is a solution then KkD(X, 1 , l )  is a solution, too. In the 
case of rotations about the y-axis, it is impossible to compute 
unique Pk's for the same reason. In conclusion, the rotation 
axis should not be purely the x-axis nor the y-axis for unique 
computation of the calibration parameters. Except for those 
two cases, the rotation axis may be fixed. This problem was 
investigated previously for rotating camera of fixed internal 
parameters in [I]. 

6 Experiments 
2 - f;(h?i + hT2) + hT3 - - fc?(h;i + h222) + h:3 . (10) Here, we show results of our algorithm using two views due 

f k  - f:(hil + hZ2) + hi3  f;(h& + hi2) + h$ to space limit. One can find details in the long version of this 



Table 1. Computation results after 100 runs at each noise level. About one hundred matching points are 
used in the computation of the homography. 

paper [7]. Assuming that the aspect ratio is 1 and the principal 
points are fixed, auto-calibration can be done using only two 
views. Table 1 shows the calibration result of 100 runs with 
2 image matches for various image noise. Since the noise is 
added to each of image coordinates, the actual RMS error is 
fi times the indicated value a.  Note that the principal point 
is the most sensitive to input image noise. On the contrary, 
rotation angles are less sensitive to input noise. 

Figure 1 shows two video frames of a soccer game. No- 
tice that there are scale change due to zooming as well as 
rotation. Inter-image homography is estimated by direct it- 
erative error minimization method [8] where initial param- 
eters are obtained using matches of lines and points, and 
the calibration result is: fo = 1145.9, fi = 1376.5 and 
(x, y)  = (324.5,181.5). Computed rotation angles for the 
three axes are (-3.78", -10.27', -0.57'). 

7 Conclusion 

We showed that auto-calibration of a rotating and zooming 
camera without 3D pattern is unique up to orthogonal trans- 
formation and implemented and tested the algorithm for syn- 
thetic and real data. This algorithm is important for the ap- 
plications like 3D reasoning from monocular rotating camera 
in sports games or video re-generation of a scene based on 
image mosaic. 
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