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Abstract 

A novel framework and method are proposed to re- 
trieve image sequences with the goal of forecasting 
complex and time-varying natural pattern. As a such 
pattern, we tackled weather radar images representing 
the spatial distribution of precipitation, the application is 
the local short-term forecasting of precipitation. In our 
approach, the forecast is made by retrieving past patterns 
similar to the present pattern, and the forecast pattern is 
produced by using its subsequent pattern of the retrieved 
sequences. In addition to the global distribution feature 
and velocity field of the pattern, we extract temporal 
texture features to catch the features of the echo patterns, 
which are nonrigid and deformable, and that appear and 
disappear. Similar sequences are retrieved based on a 
distance measure between paths in eigenspaces derived 
from the feature vectors. Several experiments confirm 
the performance of our retrieval scheme and indicate the 
predictability of the pattern. 

1 Introduction 

This world is full of complicated and somewhat vague 
phenomena. The need for machine vision techniques 
that are capable of understanding real scenes that contain 
these phenomena is increasing. As such a target, we 
decided to tackle weather radar images, which correspond 
to the spatial distribution of precipitation intensity, and 
focused on the local short-term(1h-3h) forecasting of 
precipitation using the radar reflectivity images measured 
by a weather radar system. Such forecast information is 
strongly needed for the control of aviation and surface 
transportation systems, hydrographic networks and so 
on. 

While a numerical forecasting method that is based 
on a physical model of the atmosphere is being used 
to produce daily weather reports, the method fails to 
produce precise short-term forecasts of local precipitation 
because the physical rules governing the phenomena are 
only partly understood and the current resolution of 
the observation is limited. For that reason, current 
techniques that extrapolate current radar echo patterns 
with measured velocity, are used for such purpose[l]. 
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However, since the echo patterns included in the radar 
image, change strongly, the conventional techniques can 
not produce accurate forecast because they assume the 
persistency of current phenomena. 

In this research, we focus on the repeatability of 
weather phenomena, that is, precipitation phenomena 
can be described by a few basic patterns that are gov- 
erned by rules of pattern sequencing such as pattern A 
will follow pattern B. This is something that a meteo- 
rologist implicitly acquires with experience. Base on 
this property, we introduce the framework in which the 
forecast is made by retrieving past patterns similar to 
the present pattern from a database storing a large set of 
radar images, and the future patterns of retrieved patterns 
are used to create the forecast. 

The approach of using similar past patterns has the 
potential in the non-linear prediction of chaotic time 
series, and has been applied to forecast one dimensional 
data series such as market activity[2]. A similar concept, 
founded in inference, is called Memory-based reasoning 
[3]. However, existing schemes are hampered by the 
lack of a suitable method of characterizing complex, 
time-varying,two dimensional patterns. 

In our paper, we employ temporal texture features 
as local features, and a mesh feature of gray level and 
velocity field as global features. Authors have already 
developed the feature extraction method of temporal 
texture features to characterize naturally occurring, non- 
rigid motion patterns[4][5]. The temporal texture fea- 
tures indicate types of precipitation structures, and the 
mesh feature represents the spatial distribution of echo 
patterns as regards global position and pattern shape. 
The velocity field represents the spatial distribution of 
atmospheric flow. The mesh feature and the velocity 
field are transformed into eigenspaces[6][7]. 

Using extracted features, the pattern at a particular 
time is represented by a point in the feature spaces. 
Retrieval of subsequences similar to the key sequences 
is based on similarity of paths in each feature space. 

More studies are using the eigenspace for various 
appearance-based recognition tasks for man-machine in- 
terface and so on. However, the target images were 
most limited to artificially generated patterns such as 
human gestures, but naturally occumng patterns. Our 
research revealed the potential of the eigenspace method 
in understanding natural worlds and its veiled principles. 

This paper is organized as follows. Section 2 intro- 
duces the framework and an implementation. Section 
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Figure 1: Proposed framework for image sequence re- 
trieval and forecast. 

3 shows experimental results. Section 4 draws several 
conclusions. 

2 Framework and Implementation 

As shown in Fig.1, the proposed framework consists 
of three stages: feature extraction, retrieval, and forecast. 
At first, the sequence of the image features representing 
characteristics of radar echo patterns are extracted from 
the image sequence database, which holds a large set of 
radar images sequentially, and sequences of the feature 
vectors are stored in the image feature database. Next, 
the latest image sequence is given as the key sequence, 
and is compared with each of the stored sequences 
to retrieve similar sequences. Finally, the subsequent 
sequences of the retrieved sequences are used to produce 
forecast information such as the forecasted probability 
distribution of precipitation. In our system, retrieved 
and subsequent sequences are also displayed to users, 
e.g. meteorologists, in order to support their decision 
making. 

2.1 Feature Extraction 

Local motion and texture features While the event of 
precipitation roughly moves along with atmospheric flow, 
the detail characteristics of the precipitation phenomenon 
are reflected in the echo patterns, which are nonrigid and 
deformable, and that appear and disappear continuously. 
In particular, complex motion and changing texture are 
important clues in discerning the type of phenomena. To 
catch the temporal and spatial features of such patterns, 
we proposed a feature extraction method based on the 
motion trajectory that is drawn by a moving contour in 
spatiotemporal space [4] [5]. 

For example, as shown in Fig.2(a), we can extract 
the motion trajectory included in a local spatiotemporal 
region as shown as a frame in Fig.3(a). From the motion 
trajectory, a distribution of normal velocity included in 
the region can be estimated from the probability distri- 
bution of possible tangent planes to the surfaces of the 
motion trajectory. Fig.2(b) shows the normal velocity 

Figure 2: Extraction of temporal texture features. 
(a)Motion trajectory in local spatiotemporal space, 
(b)Normal velocity distribution. 

Figure 3: (a)Radar echo image, (b)Mesh feature, 
(c)Velocity field. 

distribution obtained from Fig.2(a). The horizontal axis 
0 indicates moving direction and vertical axis 4 corre- 
sponds to speed; the gray level of each point indicates 
the amount of corresponding motion. 

From such distributions, we can measure several 
temporal and spatial features including motion unifor- 
mity, which is defined by degree of spreading of the 
distribution. In this paper, we extract six features 
x 1 =( f f2, . . . . f6)' including temporal features such 
as dominant speed fl, motion uniformity fi, and occlu- 
sion ratio of motion trajectory f3,  and spatial features 
as directionality of contour placement f4, coarseness of 
contour placement f5, and contrast of motion trajectory 
f6. These features identify the characteristics intrinsic to 
the weather radar echo sequence, such as degree to which 
echo cells appear and disappear, regularity or uncertainty 
of motion, and regularity regarding self-organized ar- 
rangement of echo cells. Only with these features can 
the type of radar echo sequence, invariant to position and 
global shape, be identified. 

Global features To catch global features invariant to 
small changes in texture and position, the mesh feature 
and the velocity field are calculated. The mesh feature 
represents a spatial distribution of the echo pattern which 
represents global position and shape of the pattern. As 
shown in Fig.3, each image frame at each time step is 
partitioned into meshes, and average gray level and aver- 
age velocity of each mesh region are calculated as vector 
components of the mesh feature and the velocity field, 
respectively. From a set of the feature vectors, we com- 
pute eigenvectors and eigenvalues of their covariance 
matrix[6][7]. The feature vectors of the mesh feature and 
the velocity field are then correspondingly transformed 



Figure 4: Paths of feature points of (a)Temporal texture 
[Axes : contrast f6 ,  motion uniformity f2, coarseness 
f5 1,  (b)Mesh feature in eigenspace, (c)Velocity field in 
eigenspace. Note each point is 1 hour apart. 

into reduced vectors x 2  and x3 in eigenspaces that are 
spanned with eigen vectors with large eigenvalues. 

2.2 Retrieval and Forecast 

The feature vectors x  ( t ) , x 2 ( t ) .  x 3 ( t ) ,  defined above, 
are calculated at every time step t  and be stored the 
image feature database. The stored feature vectors are 
normalized regarding variance and mean, and length. 
Fig.4 shows paths of feature points for a sequence in 
the feature spaces. Matching the transition in the echo 
sequence, the feature points move to draw paths in the 
feature spaces which represent the temporal development 
of the pattern. Therefore, a similarity between two 
sequences can be determined from the degree of closeness 
of the two paths. Here, a dissimilarity measure between 
two sequences at time i  and j  is defined as 

k = ~  ( n = ~  I 
( 1 )  

where d k ( i ,  j )  is a distance measure between feature 
points of feature k, L is the length of the parts of the 
sequences to be compared. The dissimilarity measure is 
the weighted sum of the distances regarding each feature, 
where the weights are denoted as U J ~  in Eq.(l). Euclid 
distance is used as the distance measure; d k ( i ,  j ) 2  = 
( x k ( i ) - x k ( j ) l t  ( ~ k ( i ) - ~ k ( j ) )  - 

Also, we set thresholds Tk to distances dk for each 
feature vector and retrieve sequences whose distances 
are less than the thresholds, in ascending order of dis- 
similarity. Next, forecast information is produced from 
the subsequent patterns of the retrieved sequences which 
are also displayed to the users. 

3 Experiments 

First, we conducted a retrieval experiment to confirm 
the effectiveness of similar sequence retrieval. First 

Figure 5: Samples of retrieval for (a)NW-SE Band-shape, 
(b)W-E Band-shape, (c)SW-NE Stratiform, (d)NW-SE 
Scattered-type, where (1eft)Key pattern, (middle and 
right)Retrieved patterns. 

the feature spaces were constructed using approximately 
1000 hours of winter-time radar images (12000 im- 
age frames) for Sapporo area, Japan. Image size was 
340x 340 pixels where one pixel corresponds to a 1 km2 
area, and the gray level was 256 levels. Dimensions of 
the eigenspace of the mesh feature and the velocity field 
were 5 and 14, respectively. These dimensionalities were 
chosen to achieve 85% cumulative proportion. From the 
dataset, parts of sequences including typical echo pat- 
terns were manually selected to be classified into one 
of four classes; A)NW-SE Band-shape, B)W-E Band- 
shape, C)SW-NE Stratiform, D)NW-SE Scattered-type, 
based on the judgment of a meteorologist. 

As the examples show in Fig.5, A)NW-SE Band- 
shape pattern forms a set of parallel lines with northwest 
to southeast orientation, and consists of small echo cells 
moving with atmospheric flow while repeatedly appear- 
ing and disappearing. B) the W-E Band-shape pattern has 
west to east orientation. C)SW-NE Stratiform pattern is 
a relatively large diffuse surface that repeatedly appears 
and disappears quite quickly, while the underlying flow 
is toward the northeast from the southwest. D)NW-SE 
Scattered pattern includes echo cells, whose shapes are 
always changing, and that are scattered at random, mov- 
ing northwest to southeast. Note: all images in the 
figures are arranged so that north is at the top. The 
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samples totaled 28, 16, 22, and 17 hours for A), B), C), 
and D) class, respectively. 

For each time step within the selected dataset, the 
dissimilarities to the other data within the selected dataset 
are calculated to retrieve similar sequences, where L = 3, 
11~,=u*~=t1'~=l.O, TI=T2=7i=4.0, and the time step is one 
hour. Fig.S(middle)(right) shows some examples of 
retrieved patterns for given key patterns in Fig.S(left). 
Table 1 shows the average hit ratio of the retrieval. Here, 
the hit ratio is a portion of candidates determined to be 
of the same class as the key up to the third rank except 
the key itself. We can see that all features cooperatively 
contribute to the high hit ratio. The retrieval error noted 
was due to intrinsic ambiguity between classes. 

Next, Fig.6 shows an example of a forecast. For 
a given ke; sequence in ~ i ~ . 6 ( a ) ,  the first candidate 
in Fig.6(b) is retrieved from the original 1000 hours 
dataset. Both sequences include an echo mass moving 
downward. Fig.6(c),(d) shows actual and forecast images 
at 1 hours to 3 hours later, respectively. We can see 
that the global distribution and motion, and temporal 
development of the forecast pattern are very similar to 
the actual ones, although the precise texture is different. 
This experiment confirmed the success of the method 
in handling strongly changing patterns in contrast to the 
conventional methods. 

4 Conclusion and Discussion 

This paper proposed a framework and a method to re- 
trieve similar image sequences toward the forecasting of 
precipitation. We verified its potential in several retrieve 
and forecast experiments. Future works include examin- 
ing the predictability of the framework and synthesizing 
forecast patterns. Also, there is a need to adaptively 
refine the weights and thresholds, and to establish links 
to physical weather phenomena. 
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Figure 6: Example of forecast. (a)Key sequence for 
retrieval, (b)Retrieved sequence, (c)Actual sequence cor- 
responding to forecasted part, (d)Forecast sequence. 
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