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Abstract 

We summarise several techniques in use in our visual 
robotics research. Our aim is to develop robots that are 
thoroughly autonomous and adaptable. We describe a 
system that is independent of typical image derivation 
standards, sampling algorithms, a priori space, object, 
or motion models, yet is able to intelligently direct its 
attention to novel activity in a complex and changing 
environment. 

1 Introduction 

We have developed a visual robotic system known as 
WRAITH, whose ultimate purpose is to follow (in the 
sense of both 'track' and 'understand') human move- 
ment, and to do so under the most unfavourable condi- 
tions, both external and internal. This is a long-term 
project, and this paper represents a report on the princi- 
ples of design and the progress of the system so far. Our 
main interest lies in the improvement of performance 
autonomy and robustness. In addressing this challenge 
we have often tried to emulate the important character- 
istics of biological systems, but this has not prevented 
us from adopting other methods when they provide an 
improvement over what biology has to offer. 

2 Background 

When we compare the general performance of robotic 
and biological solutions to the problems of dealing with 
a complex and changing environment we are struck by 
the superiority of the latter. The biological superiority 
has three salient features: attainment, autonomy and 
adaptability. 

Attainment: animals achieve higher absolute levels of 
performance in many tasks (eg, flying through a forest, 
communicating with others, avoiding dangers). 

Autonomy: animals generally learn most things them- 
selves without having to be taught or be given multiple 
learning examples. Their ultimate attainment is far re- 
moved relative to what they receive from others, far 
further than that of robots. Without this autonomy, any 
intelligence is reproductive rather than productive. 
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Figure 1: Performance silhouettes. A basis for 
schematic comparison of disparate intelligent sys- 
tems, using attainment, autonomy, and adaptability. 
Attainment: for any task an agent will have peak 
performance under certain opt~mal cond~t~ons.  
Adaptability: performance will decrease sharply or 
gradually as conditions or task vary. Autonomy: 
the agent will be dependent on others for assistance 
or preparation in some form (the area under its 
lower curve). Superior intelligence consists of high 
absolute levels of performance under a wide range 
of conditions, with low dependence. and is indi- 
cated by the area between the upper and lower 
curve. 

Adaptability: animals can thrive under a remarkable 
range of conditions by changing their behaviour, or 
physical characteristics. 

We can compare general performance in a schematic 
diagram where any agent's achievement is represented 
by the area of its enclosed competences, its performance 
silhouette (see Figure 1). The silhouette is maximised 
by having a high upper edge (strong attainment), a low 
lower edge (strong autonomy, showing the individual 
can perform its own primary bootstrapping functions if 
necessary), and breadth (strong adaptability, the faculty 
of ranging behaviour over a broad repertoire). While 
complex animals like humans are relatively dependent 
compared to the anemone, they are highly autonomous 
compared to robots. While robots may attain extremes 
of performance, it is generally in limited domains, and 
with much assistance and careful set-up. 
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Not only do animals self-organise to an extraordinary 
degree (for example, starting as a single cell) but they 
can also make major adaptations to traumatic 'recon- 
figurations' such as the loss of a leg, or an eye, or even 
the sudden inversion of all their visual inputs [8]. Ma- 
chines, by contrast, generally do not cope well with 
changes in configuration. If we intend to manufacture 
machines with a high degree of autonomy, the ability to 
perform robustly in the face of change to themselves, 
then they must adopt analogous adaptive processes. 

More specifically, animals independently develop the 
ability to function and pursue goals in ever-changing 
spatial environments. Among other faculties, they de- 
velop spatial competence via unsupervised incremental 
learning. That is, they have neither learning aids such as 
reliable a priori test data nor supervisors to point out 
what works and what doesn't. This basic spatial com- 
petence is very important; it is a prerequisite and basis 
of most intelligent behaviour. Developers are yet to 
create machines that can autonomously evolve both 
coherent vision and motor coordination [6]. To do so, 
we must solve a number of problems in novel ways, and 
our solutions must be labile enough to revise them- 
selves whenever necessary. These are some of the 
challenges we are addressing. 

3 Techniques 
WRAITH'S current methods of operation can be broken 
down into four functions (self-organised mapping, 
DIEM sampling, the Surprise function, and the Centroid 
of Interest, see Figure 2), all of which we shall describe 
in some detail, giving the algorithms. 

Self-Organised Mapping. Our assumption is that the 
apparatus that gathers information about the world, and 
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Figure 3: Self-organised Mapping. The horizontal 
axis represents the spatial ordering of a number of 
points in a robot's visual environment. The order- 
ing of these points was initially completely scram- 
bled on input. The vertical axis shows the positions 
the algorithm assigned to these points in  its own 
spatial representation. Note that the correct order- 
ing has been completely recovered. 

the apparatus that processes that information and subse- 
quently selects the system's reaction, may be physically 
and logically separated. There is therefore significant 
opportunity for information to be mis-formatted or even 
scrambled in the transmission from one apparatus to 
another. Even in robot systems designed as a unit there 
is ample room for decalibration, wear, broken protocols, 
etc. Ideally, a robot should retain or regain operational 
integrity despite all this. In order to qualify our proc- 
esses of self-organisation and recovery we create the 
worst case, under which all information gathered by the 
anterior monitoring system is deliberately completely 
spatially unordered. If the posterior processing system 
can then incrementally and independently re-order its 
own inputs without reference to what they represent, 
purely on the basis of the information in the signals 
themselves, then it has the capacity to survive extreme 
reconfiguration, and will have demonstrated autonomy 
and adaptability [2]. 

The algorithm proceeds by iteratively refining the rela- 
tive assigned positions (in the representation) of inputs 
(signals) from the outside world. Each input (e.g., C )  is 
geometrically located according to distances (e.g., AC, 
BC) calculated on the basis of differences in behaviour 
of inputs (e.g., ab, ac,  bc) and a conversion functionf. 

AB f (ac) 
AC = 

AB f (bc) 
, BC= 

f (ab) f (ab) 
The assumption behind this algorithm is that points ly- 
ing close together in environmental space create pixel 
input values that are close together in brightness and 
behave similarly over time. Over time this causes the 
scrambled internal representation to correct itself and 
become a monotonic mapping of the outside world (see 



Figure 3). 

DIEM Sampling. Once such robust and adaptive proc- 
esses have organised the information available to the 
system, it then has the opportunity to be selective about 
which information to monitor. There are times when a 
system may need to focus attention in a frontal foveal 
area, when a moving object has already been detected 
and must now be observed, for example. At other times 
the system may not be able to afford such focus, but 
must spread its attention as wide as possible, selectively 
monitoring the periphery of its visual field. This would 
be the case when no object had yet been detected, but 
the system needs to remain alert in case a moving object 
enters the visual field from an unforeseen direction, or 
when a very fast moving object is being tracked. DIEM 
stands for Dimensionally Independent Exponential 
Mapping, and refers to the fact that sampling densities 
can be varied independent in x and y dimensions [ 5 ]  
(see Figure 4). 

Given an image of width W (measured in  pixels) and 
height H, from which we wish to sample w points in the 
horizontal dimension and h points in the vertical dimen- 
sion, each pair of original image data point co-ordinates 
(x, y) is given by: 

where s, and s,, are the indices of the sample (or co- 
ordinates of the derived sample image). This sampling 
system is quite distinct from those currently in  use 
elsewhere [7]. 

Surprise Function. The third step in our process con- 
trols selectivity of motion events. For example, though 
an object might appear, disappear, and reappear con- 
tinuously, after a while it may be unproductive to focus 
the system's attention on that object. It may be more 

Figure 5: Surprise Function. Pictorial representations 
of relative levels of surprise assigned to various areas 
and activities in a laboratory scene. 

advantageous to simply note that its motion is repeti- 
tive, thus releasing attention to search for other moving 
objects. And if later the first object suddenly stops 
moving then we may also want to have attention revert 
to it for a moment. This faculty prevents the system 
becoming unduly fixated on relatively uninteresting 
objects, such as cooling fans, when there are more in- 
teresting objects such as people in the vicinity [ l ,  4,5]. 

Each pixel possesses a proto-memory consisting of a 
single value M. The signal entering each unit is repre- 
sented by a single value S. In the initial case, S is just 
the brightness of the pixel at the memory unit's loca- 
tion. The value of M is updated from S continually, us- 
ing the equation: 

Varying R adjusts the relative weight given to more 
recent values of S. If 1 - R is small then the value of M 
will be very large compared to S, due to its rapid accu- 
mulative effect. So, as we wish to compare S to M to 
derive a surprise value U ,  we first need to renormalise 
M. To do this we use another constant, P, which we 
derive from R: 

P =  1 /(I  - R). 

P measures the persistence of memory. Now: 

where D (prediction) is an exponentially decaying 
moving average of S. Then: 

Thus U (surprise) corresponds to the 'figural' content 
set against the 'ground' of P. 

U is an output of the memory unit, one that responds to 
change in single time intervals, because its value de- 
pends directly on the input value of S. It is therefore 
subject to any noise carried by S and does not, in itself, 
provide any temporal smoothing. Fortuitously, we al- 
ready have a form of internal smoothing in  D. Conse- 



quently, the first memory units in  our visual system are 
implemented in parallel, and the D outputs used to pro- 
duce a difference d, that is 

d = lchannell. D - channel2.DI 

As this value is dependent only on departure from a 
temporally and spatially local norm, i t  is directly re- 
sponsible for very useful behaviour: a tendency to turn 
towards the unusual, no matter what the context. It does 
this by assigning an implicit interest measure to all visi- 
ble directions. 

Centroid of Interest. Finally. having ranked various 
areas of motion using a range of interest levels. the 
system must act upon its information. We now describe 
how the system incrementally calculates a new direction 
of gaze. It does this without any object model, with no 
prior information about the scene or the domain of op- 
eration, and with no segmentation of the scene. It de- 
rives a single unambiguous direction of gaze from any 
scene, taking into account all the levels of interest it has 
developed [3]. The centroid of interest is: 

where n is the number of memory units, each of which 
(u), has an x co-ordinate, a y co-ordinate, and a differ- 
ence d, and where m is the number of memory layers, 
each of which (I) has a weight g. 

The result of these techniques is a system that can me- 
chanically reposition its camera approximately three 
times per second, following the motion of people 
walking around a room, or out in  the street. Once a 
walking person, for example, sits down to type at a 
keyboard, and becomes relatively still (moving, but i n  a 
repetitive way), WRAITH is automatically able to shift 
attention to something else in the room. Secondly, if 
part of the room contains a high level of activity, such 
as areas near doors, it will learn to pay less attention to 
such an area, but be highly reactive and focussed if 
movement is detected in  a less-used area of the room, 
such as a corner. This is a result of its ability to 
autonomously develop a notion of 'normality' in any 
scene, and to react most strongly when that pattern of 
normality is broken. It has already been used this way 
as a security device in  our own laboratories, taking 
photographs of people when they move into areas not 
normally used at night. 

4 Discussion 

ratus does are clearly desirable. Enabling robots to self- 
organise their sensory arrays and build their own repre- 
sentations allows them to avoid this obvious error. This 
characteristic also brings other benefits, as it overcomes 
a number of data fusion problems, where the integration 
of multiple cameras, for example, needs to be fused into 
a single representation. These techniques make no dis- 
tinction between the source of incoming signals, as they 
are effectively unaware of any sources anyway. They 
are all able to work without standard orthogonal image 
arrays upon which most systems are dependent. 

Finally, though it is obvious that actuators cannot be 
self-calibrated without feedback, it is also obvious that 
sensory systems do not need to provide feedback, they 
are sufficient in themselves to organise themselves. 
They consequently have an independence that actuator 
systems cannot have, and should therefore be the start- 
ing point of any research directed at developing robots 
with well-developed performance silhouettes. 
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