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Abstract 
Vision is an ideal sensor modality for intelligent robots. It 
provides rich information on the environment as required 
for recognizing objects and understanding situations in 
real time. Moreover, vision-guided robots may be largely 
calibration-free, which is a great practical advantage. 
Three vision-guided robots and their design concepts are 
introduced: an autonomous indoor vehicle, a calibration- 
free manipulator arm, and a humanoid service robot with 
an omnidirectional wheel base and two arms. Results ob- 
tained, and insights gained, in real-world experiments with 
them are presented. 

1 Introduction 

1.1 Robots - Today and Tomorrow 

Industrial robots are of great economic and technological 
importance. Until 1996 approximately 860,000 robots had 
been installed worldwide. At that time 680,000 of them 
were still being used, for the most part in automobile and 
metal-manufacturing [IFR 19971. Typical applications 
include welding cars, spraying paint on appliances, assem- 
bling printed circuit boards, loading and unloading ma- 
chines, and placing cartons on a pallet. Experts estimate 
that by the year 2000 about 950.000 industrial robots will 
be employed world-wide. 

Although present robots contribute very much to the pros- 
perity of the industrialized countries they are quite differ- 
ent from the robots that researchers have in mind when 
they talk about "intelligent robots". Today's robots 
r are not creative or innovative, 
c do not think independently, 

do not make complicated decisions, 
c do not learn from mistakes, 

do not adapt quickly to changes in their surroundings. 

They rely on detailed teaching and programming and care- 
fully prepared environments. It is costly to maintain them 
and it is difficult to adapt their programming to slightly 
changed environmental conditions or modified tasks. 

Although the vast majority of robots today are used in 
factories, advances in technology are enabling robots to 
automate many tasks in non-manufacturing industries such 

as agriculture, construction, health care, retailing and other 
services. These so-called "field and service robots" aim at 
the fast growing service sector and promise to be a key 
product for the next decades. 

From a technical point of view service robots are interme- 
diate steps towards a much higher goal: "personal robots" 
that will be as indispensable and ubiquitous as personal 
computers today. Personal robots must operate in varying 
and unstructured environments without needing mainte- 
nance or programming. They must cooperate and coexist 
with humans who are not trained to cooperate with robots 
and who are not necessarily interested in them. Advanced 
safety concepts will be as indispensable as intelligent com- 
munication abilities, learning capabilities, and reliability. It 
will be a long way of research to achieve this goal, but 
undoubtedly vision - the most powerful sensor modality 
known - will enable these robots to perceive their environ- 
ments, to understand complex situations and to behave 
intelligently. 

1.2 Scope and Outline of this Paper 

This paper presents some of the underlying concepts and 
principles that were key to the design of our research ro- 
bots. In brief, they are: 

Vision is the most powerful sensor modality for pro- 
viding rich and timely information on a robot's environ- 
ment. 

Behavior is the key to a powerful system architecture 
that enables a robot to construct complex actions by 
combining elementary behavior primitives. 

Situation assessment is the basis for the dynamic se- 
lection of the most appropriate behavior by a robot in 
its interactions with the outside world. 

Perception rather than measurement should be the ba- 
sis for situation assessment and robot control. 

We expect that these fundamental concepts are a strong 
basis for future generations of intelligent robots that com- 
bine locomotive and manipulative actions. In section 2 
these concepts are explained in more detail. 

Another fundamental principle has considerably influ- 
enced our research work: Every result has to be proved 
and demonstrated in practical experiments and in the real 
world. While this approach is rather demanding and often 
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frustrating, compared to mere computer simulations it has 
the great advantage of yielding by far more reliable and 
valuable results. This will be shown in sections 3-5 where 
we introduce three of our vision-guided robots: an autono- 
mous indoor vehicle (section 3), a calibration-free manipu- 
lator arm (section 4) and a humanoid mobile service robot 
(section 5). 

2 Key Concepts for Intelligent Robots 
of the Future 

2.1 Vision and its Potential for Robots 

When a human drives a vehicle he depends mostly on his 
eyes for perceiving the environment. He uses his sense of 
vision not only for locating the path to be traversed and for 
judging its condition, but also for detecting and classifying 
external objects, such as other vehicles or obstacles, and 
for estimating their state of motion. Entire situations may 
thus be recognized, and expectations, as to their further 
development in the "foreseeable" future, may be formed. 

The same is true for almost all animals. With the exception 
of those species adapted to living in very dark environ- 
ments, they use vision as the main sensing modality for 
controlling their motions. Observing animals, for instance, 
when they are pursuing prey or trying to escape a predator, 
may give an impression of the performance of organic 
vision systems for motion control. 

In some modem factory and office buildings mobile robots 
are operating, but almost all of them are blind. Their sen- 
sors are far from adequate for supplying all the informa- 
tion necessary for understanding a situation. Some of them 
have only magnetic or simple optical sensors, allowing 
them merely to follow an appropriately marked track. They 
will fail whenever they encounter an obstacle and they are 
typically unable to recover from a condition of having lost 
their track. The lack of adequate sensory information is an 
important cause making these robots move in a compara- 
tively clumsy way and restricting their operation to the 
simplest of situations. 

Other mobile robots are equipped with sonar systems. 
Sonar can, in principle, be a basis for powerful sensing 
systems, as evidenced by certain animals, such as bats or 
dolphins. But the sonar systems used for mobile robots are 
usually rather simple ones, their simplicity and low cost 
being the very reason for choosing sonar as a sensing mo- 
dality. It is then not surprising that such systems are se- 
verely limited in their performance by low resolution, 
specular reflections, insufficient dynamic range, and other 
effects. 

Nevertheless, even when comparing the most highly devel- 
oped organic sonar systems with organic vision systems, it 
is obvious that in all environments where vision is physi- 
cally possible animals endowed with a sense of vision 
have, in the course of evolution, prevailed over those that 
depend on sonar. This may be taken as an indication that 
vision has, in principle, a greater potential for sensing the 
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Figure 1: 
Conceptual structure of object-oriented robot vision systems. 
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environment than sonar. Likewise, it may be expected that 
advanced robots of the future will also rely primarily on 
vision for perceiving their environment, unless they are 
intended to operate in other environments, e.g. under wa- 
ter, where vision is not feasible. 

Object 
Process 

One apparent difficulty in implementing vision as a sensor 
modality for robots is the huge amount of data generated 
by a video camera: about 10 million pixels per second, 
depending on the video system used. Nevertheless, it has 
been shown (e.g., by [Graefe 19891) that modest computa- 
tional resources are sufficient for realizing real-time vision 
systems if a suitable system architecture is implemented. 
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As a key idea for the design of efficient robot vision sys- 
tems the concept of object-oriented vision was proposed. 
It is based on the observation that both the knowledge 
representation and the data fusion processes in a vision 
system may be structured according to the visible and rele- 
vant external objects in the environment of the robot (Fig- 
ure 1). For each object that is relevant for the operation of 
the robot at a particular moment the system has one sepa- 
rate "object process". An object process receives image 
data from the video section (cameras, digitizers, video bus 
etc.) and generates and updates continuously a description 
of its assigned physical object. This description emerges 
from a hierarchically structured data fusion process which 
begins with the extraction of elementary features, such as 
edges, corners and textures, from the relevant image parts 
and ends with matching a 2-D model to the group of fea- 
tures, thus identifying the object. 

. . .  Object 
Process 

This concept is practical because it was found that in any 
given moment only a small number of objects are relevant 
and that, consequently, only a small number of processes 
need to be active simultaneously. In the next moment, 
however, different objects may be relevant; therefore, the 
ability to switch the system's focus of attention quickly is 
crucial. The switching of attention and the control of the 
cameras is performed by a vision system management 
process that dynamically generates appropriate object pro- 
cesses upon request. 

Object 
Process 



The potential of object-oriented vision systems was first 
demonstrated in high-speed autonomous highway driving 
applications [Graefe, Kuhnert 19881, [Graefe 19921. Later 
the same concept has proved its value in mobile and sta- 
tionary indoor robots. 

2.2 Behavior 

Biological behaviors could be defined as anything that an 
organism does involving action and response to stimula- 
tion, or as the response of an individual, group, or species 
to its environment. Behavior-based robotics has become a 
very popular field in robotics research because biology 
proves that even the simplest creatures are capable of in- 
telligent behavior: They survive in the real world and com- 
pete or cooperate successfully with other beings. Why 
should it not be possible to endow robots with such an 
intelligence? By studying animal behavior, particularly 
their underlying neuroscientific, psychological and etho- 
logical concepts, robotic researchers have been enabled to 
build intelligent behavior-based robots according to the 
following principles: 

complex behaviors are combinations of simple ones, 
complex actions emerge from interacting with the real 
world 
behaviors are selected by arbitration or fusion mecha- 
nisms from a repertoire of (competing) behaviors 
behaviors should be tuned to fit the requirements of a 
particular environment and task 

c perception should be actively controlled according to 
the actual situation 

Many system architectures and control methods exist to 
realize behavior-based robots. As one realization out of 
this class of architectures we propose the concept of situa- 
tion-oriented behavior-based control (section 2.3). Its main 
characteristics are active perception of the robot's dynami- 
cally changing environment, recognition and evaluation of 
its current situation, and dynamic selection of behaviors 
appropriate for the actual situation. Animals simplest capa- 
bilities, i.e., to perceive and act within an environment in a 
meaningful and purposive manner, can thus be imitated by 
our robots to a certain degree. 

2.3 Situation Assessment 

According to the classical approach, robot control is 
model-based. Numerical models of the kinematics and 
dynamics of the robot and of the external objects that the 
robot should interact with, as well as quantitative sensor 
models, are the basis for controlling the robot's motions. 
The main advantage of model-based control is that it lends 
itself to the application of classical control theory and, 
thus, may be considered a straight-forward approach. The 
weak point of the approach is that it breaks down when 
there is no accurate quantitative agreement between reality 
and the models. Differences between models and reality 
may come about easily; an error in one of the many coeffi- 
cients that are part of the numerical models suffices. 
Among the many possible causes for discrepancies are 
initial calibration errors, aging of components, changes of 

environmental conditions, such as temperature, humidity, 
electromagnetic fields or illumination. maintenance work 
and replacement of components, to mention only a few. 
Consequently, most robots work only in carefully con- 
trolled environments and need frequent recalibrations, in 
addition to a cumbersome and expensive initial calibration. 

Organisms, on the other hand, are robust and adapt easily 
to changes of their own conditions and of the environment. 
They never need any calibration, and they normally do not 
know the values of any parameters related to the character- 
istics of their "sensors" or "actuators". Obviously, they do 
not suffer from the shortcomings of model-based control 
which leads us to the assumption that they use something 
other than numerical models for controlling their motions. 
Perhaps their motion control is based on a holistic assess- 
ment of situations and the selection of behaviors to be 
executed on that basis, and perhaps robotics could benefit 
from following a similar approach. 

According to Webster's Third New International Dictio- 
nary [Babcock 19761 the term "situation" describes among 
others "the way in which something is placed in relation to 
its surroundings", a "state", a "relative position or combi- 
nation of circumstances at a given moment" or "the sum of 
total internal and external stimuli that act upon an organ- 
ism within a given time interval". We define the term 
"situation" in a similar way, but with a more operational 
aim, as the set of all decisive factors that should ideally be 
considered by the robot in selecting the correct behavior 
pattern at a given moment. These decisive factors are: 

perceivable objects in the environment of the robot and 
their suspected or recognized states; 
the state of the robot (state of motion, presently exe- 
cuted behavior pattern, ...); 
the goals of the robot, i.e. permanent goals (survival, 
obstacle avoidance) and transient goals emerging from 
the actual mission description (destination, corridor to 
be used, ...); 
the static characteristics of the environment, even if 
they cannot be perceived by the robot's sensors at the 
given moment; 
the repertoire of available behaviors and knowledge of 
the robot's abilities to change the present situation in a 
desired way by executing appropriate behavior patterns. 

Figure 2 illustrates the definition of the term "situation" by 
embedding it in the action-perception loop of a situation- 
oriented behavior-based robot. The actions of the robot 
change the state of the environment, and some of these 
changes are perceived by the robot's sensors. After assess- 
ing the situation an appropriate behavior is selected and 
executed, thus closing the loop. The role of a human oper- 
ator is to define external goals via a man machine interface 
and to control behavior selection, e.g., during supervised 
learning. 

Although situation-oriented robot control has proven much 
more robust and flexible under real-world conditions than 
classical model-based control it is not perfect. One reason 
is that, obviously, the robot cannot base its behavior selec- 
tion on a "true" or "real" situation, but only on an internal 
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Figure 2: 
The role of "situation" as a key concept in the perception- 
action loop of a situation-oriented behavior-based robot. 

image of the situation as created by the robot according to 
its sensor information and its - always imperfect - knowl- 
edge of the world and of its own characteristics. Also, 
disturbances during the behavior execution can lead to 
non-expected situations. Although the disturbances may be 
corrected by either adjusting behavior-immanent parame- 
ters or selecting a different behavior, they will usually 
cause the robot to move in a non-ideal way. 

2.4 Perception 
Model-based robot control depends on a continuous flow 
of numerical values describing the current state of the 
robot and its environment. These values are derived from 
measurements performed by the robot's sensors. One 
problem here is that the quantities that .are needed for up- 
dating the numerical models may be difficult to measure, 
e.g., the distance, mass and velocity of some external ob- 
ject that is posing a collision danger. Also, there are cer- 
tain important decisions that cannot be made on the basis 
of measurements alone; the hypothetical decision whether 
in a particular situation a collision with a parked car 
should be brought about in order to avoid a collision with 
a pedestrian is an example. 

Humans and other organisms, on the other hand, do not 
depend on measurements for controlling their motions. If, 
for instance, we want to sit down on a chair or pass 
through an open door, we do not first measure the size of 
the chair, the door, or our body; rather, we make a qualita- 
tive judgement whether the chair is high or low, or 
whether the door is wide or narrow, and then execute a se- 
quence of motions that is adequate for the situation. In 
short, we substitute perception for measurement. 

According to Webster's Dictionary "perception" is: 
+ a result of perceiving; 

reaction to sensory stimulus; 
+ direct or intuitive recognition; 
+ the integration of sensory impressions of events in the 

external world by a conscious organism; 
+ awareness of the elements of the environment. 

"To perceive" means, according to the same source, 

+ to become aware of something through the senses; 
to become conscious of something; 

+ to create a mental image; 
to recognize or identify something, especially as a basis 
for, or as recognized by, action. 

Typical questions to be answered by perception are: 
+ Which objects exist? 
r What is the relationship between objects? 
+ Is it necessary to react? How? 

Perception, rather than measurement, is thus a prerequisite 
for, and a complement of, situation assessment. Vision is 
the ideal sensing modality for perception because it is 
capable of supplying very rich information on the environ- 
ment. 

The actual design and implementation of a behavior pat- 
tern and of related perceptual processes depend on the 
robot's environment and task. A mobile robot navigating 
in a network of passageways needs different behaviors and 
recognition modules than a walking robot intended to ex- 
plore rough terrain. In the sequel we will explain how we 
implemented visually controlled behaviors for an autono- 
mous indoor vehicle navigating in a network of passage- 
ways, a stationary calibration-free manipulator grasping 
objects, and a service robot docking to tables and eventu- 
ally intended to combine locomotive and manipulative 
actions of the former mentioned robots. 

3 Vision-Based Navigation 
Autonomous navigation of robots in complex environ- 
ments like, e.g., factories, warehouses, or office buildings, 
is of great practical interest. Three system architectures 
based on different navigation concepts were investigated 
with our vision-guided mobile robots: 

r coordinate-based navigation, relying on accurate odo- 
meters and precise maps that are difficult to provide; 

+ behavior-based navigation with the need of artificial 
landmarks, entered into a topological map that could 
eventually be generated automatically; 

+ situation-oriented behavior-based navigation with- 
out needing any artificial landmarks, only relying on a 
topological map which is extended by suitable attribute 
lists to facilitate reorientation and coordination of be- 
havior patterns; attributes may consist of, e.g., visible 
"natural" landmarks (i.e., fixed visible objects) along 
the robot's path or geometric properties of the robot's 
environment that have been "measured" with its own 
(inaccurate) odometers. 

Basing our robots' navigation on coordinate systems, exact 
kinematic models of the drive system and precisely mea- 
sured maps (with help of a theodolite!) was time consum- 
ing and did not yield reliable results. In sharp contrast, 
behavior-based navigation in combination with an attrib- 
uted topological map allows a large tolerance for errors 
regarding the odometry and the exact metric of the mod- 
eled network. It suffices to represent the exact topology, 
since navigation could rely on visual cues only. 
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Figure 3 gives an overview of the system architecture that 
has been realized for our situation-oriented behavior-based 
robot. In this section we give only a short introduction to 
the different modules and their interaction (see [Bischoff 
et al. 19961 for details): 
r a situation module taking into account all the decisive 

factors explained in section 2.3 and basing thereupon 
the dynamic selection of behaviors 
a sensor module comprising an object-oriented vision 
system as the main sensor and a proprioceptor system 
that provides auxiliary information needed by certain 
behavior patterns 

r an actuator module executing commanded behaviors by 
activating a sequence of control laws for the drives 

r an extendable knowledge base providing information 
about the static characteristics of the environment and 
the actual mission and goals 
a man machine interface for operator intervention and 
status display 

Reasoning about the current situation is realized within the 
situation module which interacts with the sensors, the 
actuators, the data base management, and the man machine 
interface in a bidirectional way. In Figure 3 an arrow 
pointing away from the module indicates a request or a 
command, and an arrow pointing towards the module indi- 
cates a data and information flow. Fusing the data and 
information from the different modules makes situation 
assessment and behavior selection possible. Acting as the 
core of the whole system this module is responsible for 
system management and behavior coordination. 

Each cooperation between actuators and sensors is super- 
vised by a specific coordination process within the situa- 
tion module. By activating and deactivating these coordi- 
nation processes the management process realizes the situ- 
ation-dependent concatenation of elementary behavior 
patterns to complex and elaborate action. 

3.2 Object Recognition and Behavior Control 

The basis for behavior-based navigation is a robot possess- 
ing a certain repertoire of built-in behaviors and cognitive 
abilities, e.g., 
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Figure 3: 
System architecture of a situation-oriented behavior-based 
robot. 

to recognize and follow a passageway, 
to recognize and turn at a junction, if necessary, 
to recognize objects and avoid collisions while moving, 

r to recognize goal objects/locations in the environment. 

Vision is an ideal sensing modality to realize such cogni- 
tive abilities. Combined with the robot's awareness of its 
actual situation a very good prediction of what objects are 
likely to be visible in the next moment, what they will look 
like, and where and how to find them in the image. This 
knowledge is a key factor for reducing the search space, 
thus saving valuable processing time. 

Four basic cognitive abilities enabling the robot to recog- 
nize walls, junctions, certain goal points, and rectangular 
landmarks have been implemented and allow the robot to 
execute the behaviors "moving along comdor", "turning at 
corners and junctions", and "driving towards goal points 
or landmarks" (Figure 4). Details of the vision and control 
algorithms that are necessary for these behaviors have 
been published elsewhere [Bischoff et al. 19961. 

3.3 Experiments and Results 

Experimental robot ATHENE 11. The described con- 
cepts for controlling a mobile robot by object-oriented 
vision and behavior-based navigation were implemented as 
a final state machine and tested on the mobile robot 
ATHENE 11 (Figure 5). A PC-AT 80486,50 MHz, is used 



Figure 5: 
ATHENE 11, a vision-guided mobile robot, 

as system controller and hosts the image processing system 
based on a single T805 transputer frame grabber (cycle 
time 100 rns). 

Laboratory test course environment. Several different 
experiments were carried out in a part of a general purpose 
laboratory building [Wershofen 19961 (Figure 6). It is 
illuminated by both artificial light and natural light shining 
through the glass walls causing space and time variant 
conditions. Due to the dimensions of the vehicle all cor- 
ners must be considered narrow and, therefore, require a 
relatively accurate maneuvering (clearance 10- 15 cm). 

Complex robot motion control. The situation-oriented 
behavior-based navigation concept was verified in a num- 
ber of real-world experiments. The velocity of the vehicle 
was up to 0.8 rnls while driving along corridors and 
0.2 rnls at turns. The conducted experiments confirmed a 
large tolerance for map errors (abou; 2 m for distances and 
10" for angles), even if the course included points where 
high accuracy is needed, e.g., to correctly turn around 
comers into narrow passageways. 

Missions. Mission descriptions may be given to the robot 
either as a list of behaviors to be executed, or, much more 
conveniently, as a list of locations to be passed. Figure 6 
shows an example of a course that was correctly followed 
by the robot after it had received the mission description in 
the form of a list of locations. A more convenient human- 
robot communication and interaction is discussed in 
[Graefe, Bischoff 19971. 

(Re-)orientation. At the beginning of another experiment 
the robot was commanded to drive to the e-lab, starting 
from an unknown position somewhere in the corridor be- 
tween the workshop and the Xerox machine. In order to 
reorient itself it first randomly concatenated wall follow- 
ing and turning behaviors, simultaneously searching dis- 
tinctive landmarks that could be matched to landmark de- 
scriptions stored in the attributed topological map. When 
the robot was near the rob-lab it found the landmark in 
front of the kitchen and eventually completed its mission. 

Figure 6:  
The course traveled by ATHENE 11 according 
to the mission description shown on the right. 
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Learning. Two forms of learning were investigated, su- 
pervised and unsupervised learning. In both cases the goal 
was to have the robot generate, or extend, an attributed 
topological map of the environment. During supervised 
learning the robot explores an unknown environment to- 
gether with a human teacher. The geometric information is 
provided by the robot's dead-reckoning system, and rele- 
vant location names as well as attributes relating to land- 
marks, are entered by the teacher. When the cognitive 
abilities of the robot are not sufficient to safely navigate at 
critical points the teacher provides the correct behavior or 
action pattern to solve this navigational problem. 

Experiments with unsupervised learning are still in their 
early stages. To achieve results comparable to those ob- 
tained in supervised exploration runs the sensory abilities 
of the robot have to be further improved. 

4 Vision-Based Calibration-Free 
Manipulation 

4.1 Concept 

A novel concept for vision-based manipulator control has 
been introduced previously [Graefe 19951. It eliminates 
the need for a calibration of the robot and of the vision 
system, it uses no world coordinates, and it comprises an 
automatic adaptation to changing parameters. The concept 
is based on the utilization of laws of projective geometry 
that always apply, regardless of camera characteristics, and 
on machine learning for the acquisition of knowledge re- 
garding system parameters. Different forms of learning 
and knowledge representation have been studied, allowing 
either the rapid adaptation to changes of the system param- 
eters or the gradual improvement of skills by an 
accumulation of learned knowledge. 

The concept is simple. While the robot watches its end 
effector with its cameras, like a playing infant watches his 
hands with his eyes, it sends more or less arbitrary control 
commands to its motors. By observing the resulting 



changes in the camera images it "learns" the 
relationships between such changes in the im- 
ages and the control commands that caused 
them. After having executed a number of test 
motions the robot is able to move its end 
effector to any position in the images that is 
physically reachable. If, in addition to the end 
effector, an object is visible in the images the 
end effector can be brought to the object in 
both images and, thus, in the real world. 

Based on this concept a robot can localize and 
grasp objects without any knowledge of its Figure 7: 
kinematics or its camera parameters. In con- Manipulator robot cons~sting of an articulated 
trast to other approaches with similar goals, arm ( 5  degrees of freedom) with a two-finger 
but based on neural nets, no training is needed gripper and a stereo vlslon system. 

camera a 

&x 
Figure 8: 

Schematic diagram of 
the articulated arm and 
camera arrangement. 

before the manipulation is started. 
pose of accumulating knowledge; it should be capable of 

4.2 Experimental Results learning, re-learning and forgetting, and of course, of real- 
time operation. The key idea is to store the image coordi- 

We have the concept On an articulated arm nates of the gripper in both images (4 dimensions!) and the 
robot Witsubishi Movemaster RV-M2) with 5 degrees of control commands that have brought the gripper to that 
freedom, corresponding to the 5 joints Jt, to Jt, (Figures 7 particular location, in 4-D tables. When later a similar 
and 8)' The cameras have been attached the robot On location is to be reached suitable control commands may 
metal rods at the first link so that they rotate around the be recalled from the table. 
(vertical) axis of Jt, together with the arm. They are 
mounted in a rather unstable way to make the impossibility AS [Xie et al. 19971 have shown it is possible to realize 
of any calibration or precise adjustment obvious, and to Permanent learning and a gradual skill improvement: With 

allow easy random modifications of the camera arrange- each experiment the motions of the robot become faster 

ment. and smoother, and after a few successful grasps the time 
required reduces to only a few seconds. Open questions 

Objects of various shapes were success full^ grasped, al- are the optimal of knowledge representation, the 
regarding the Or kinematic acceleration of learning in more complicated situations, 

parameters of the robot was used. Even the realization of re-learning, and the 
arbitrary rotations of the cameras were grasping of arbitrarily shaped objects in 
tolerated while the robot was operating. arbitrary poses. 
Key to this unusual robustness is the re- 
nunciation of quantitative model knowl- 
edge (i.e., camera model and kinematic 5 Vision for Service Robots 
model of the arm) and the direct transition 
from image coordinates to motor control 5.1 Introduction 
commands, without using any inverse per- 
spective or kinematic transformations. A first generation of service robots already 

assists or rationalizes manipulation, trans- 
The gripper approached the object in a portation and processing tasks in various 
series of steps with some test motions in- service domains. Possible application areas 
between ("look-think-move" approach). include cleaning, transport and handling of 
The grasping process is, therefore, rela- goods, surveillance and protection of 
tively slow (about 50 s). buildings, construction and maintenance. 

In a first implementation the relationships ' All robots working in these domains have 
between control commands and the result- > been designed to provide special solutions 

ing motions in the camera images were ' , for specific problems. They are difficult to 

forgotten after the end of each grasping adapt to slightly modified tasks and envi- 

experiment. This made the system insensi- ronments. 

tive to parameter changes between experi- To develop the next generation of service 
ments, but it also prevented the robot from robots that could be used in many different 
learning from experiences and from im- Figure 9: environments (domestic, public and indus- 
proving its motion skills. The humanoid robot HERME' trial) for a variety of tasks (e.g., elderly 

with an omnidirectional wheel 
4.3 Long-Term Memory base, two arms with 6 degrees care, people, cO- 

of freedom each and a stereo- workers in factories) much research is still 
We are currently working on the realiza- vision system on a pan-tilt head; needed to improve considerably design and 
tion of a long-term memory for the pur- dim.: 70 cm x 70 cm x 170 cm. safety concepts, locomotion and manipula- 



tion capabilities, cooperation and communication abilities, 
reliability, and - probably most important - adaptability, 
learning capabilities and (visual!) sensing skills. To ad- 
vance research in these fields we have developed the ver- 
satile experimental robot HERMES (Figure 9) based on 
our previously gained experiences. 

5.2 Design and Realization of HERMES 

Future service robots will interact much closer with hu- 
mans and work in environments which are typically co- 
inhabited by humans and especially designed for humans. 
These environments will not be modified for the benefit of 
robots in any way. If a robot is to operate in such sur- 
roundings it should be designed according to an anthropo- 
morphic model and should have sensory and motor skills 
comparable to those of a human. Such a humanoid design 
also facilitates the interaction between humans and robots, 
making it ideally as easy and natural as between humans. 

In designing our humanoid experimental robot we placed 
great emphasis on modularity and extensibility [Bischoff 
19981. All drives are realized as modules with compatible 
mechanical and electrical interfaces; each drive module 
consists of 2 cubes containing a motor-transmission com- 
bination, power electronics, sensors, a micro-controller, 
and a communication interface. A standardized CAN bus 
connects all drive modules with the main computer. HER- 
MES runs on 4 wheels, arranged on the centers of the sides 
of its base. The front and rear wheels are driven and ac- 
tively steered, the lateral wheels are passive. Two drive 

motors of 500 W each are sufficient for an acceleration of 
1 m/s2 and a maximum speed of 2 m/s. 

The manipulator system consists of two articulated arms 
with 6 degrees of freedom each on a body that can bend 
forward (130") and backward (-90"). The work space ex- 
tends up to 120 cm in front of the robot. The heavy base 
guarantees that the robot will not loose its balance even 
when the body and the arms are fully stretched. Currently 
each arm is equipped with a two-finger gripper that is 
sufficient for basic manipulation experiments. 

Main sensors are two video cameras on a pan-tilt platform; 
numerous proprioceptors are integrated in the motor mod- 
ules, additional sensors may be connected via available 
interfaces. A hierarchical multi-processor system is used 
for information processing and robot control. The control 
and monitoring of the individual drive modules is per- 
formed by the sensors and controllers embedded in each 
module. The main computer is a network of digital signal 
processors (DSP, Texas Instruments TMS 320C40) em- 
bedded in a standard industrial PC. Sensor data processing 
(including vision), situation recognition, behavior selec- 
tion and high-level motion control are performed by the 
DSPs, while the PC provides data storage and the human 
interface. The developer and user interfaces have been 
realized under Windows NT 4.0. A radio Ethernet inter- 
face allows to control the robot remotely. Separate batter- 
ies for the motors and the information processing system 
allow a continuous operation of the robot for several 
hours without recharging. 

Figure 10: 
HERMESexecuting a complex pre-programmed motion sequence (duration: 120 s): picking up a ball from a table with its left grip- 
per, handing it over to the right gripper, grasping a drawer and pulling it open with its left gripper, dropping the ball into the drawer, 
and closing drawer by pushing it. This motion sequence demonstrates how effectively HERMES' articulated body extends the reach 
of its arms while the cameras remain in a favorable position for close supervision of the manipulation tasks. 



5.3 First Experimental Results 

The robot's hardware has been completed, and a few driv- 
ing and manipulation experiments have been conducted to 
evaluate its performance. 

Pre-programmed and taught motion patterns. To allow 
simple high-level control of HERMES, basic functions 
were written in C to control groups of modules as func- 
tional units: the mobile wheel base, the left and the right 
arm, the camera platform and the body. These simple func- 
tions enable us to drive HERMES manually and to teach it 
simple pick and place operations (via a wireless keyboard), 
but also to program more sophisticated tasks, e.g., handing 
over a ball from one hand to the other, or opening a draw- 
er. Figure 10 shows a series of 12 snapshots from a 120 s 
motion sequence in which HERMES is picking up a ball 
from a side table and dropping it into a drawer to be open- 
ed and closed. The positions of the ball and the table had 
been taught in a previous test run. These snapshots illus- 
trate how effectively the bendable body enlarges the ro- 
bot's work space, and that it also allows the cameras to be 
kept in a favorable position for closely supervising all 
kinds of object manipulation. 

Vision-guided behaviors. Methods for object manipula- 
tion that do not depend on any calibration of the robot or 
its vision system, as well as situation-oriented behavior- 
based control and navigation methods using visual feed- 
back are currently being implemented on HERMES. First 
implementations of vision-guided behaviors enable HER- 
MES to fixate known objects during navigation (e.g., land- 
marks), and to approach docking stations (e.g., tables). 

5.4 Vision-Guided Docking Behavior 

The main task of a mobile service robot with manipulator 
arms is to manipulate various objects at different locations. 
Prerequisite for manipulating objects is to bring them 
within the working range of arms and grippers, i.e., to 
navigate the robot sufficiently close to the object to be 
manipulated. We propose a new vision-guided method 
enabling the robot to approach objects that are in its field 
of view and to stop in front of them at a pose (position and 
orientation) that is suitable for subsequent manipulation. It 
is based on the continuous tracking of a predefined refer- 
ence line that corresponds to a physical edge of the dock- 
ing object (e.g., a table's front edge) and the fixation of a 
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Figure 11: 
Typical trajectory followed by the robot during the docking 
maneuver; it is directly derived from sensor readings and not 
pre-calculated (see text). The start pose may be arbitrary, the 
end pose is reached with sufficient accuracy towards the mid- 
dle of the docking station's front side and in parallel to it. 

reference point of the object (e.g., a table corner). This 
fixation or gaze control yields encoder values (angles) for 
the pan (a) and tilt (y) axis of the camera platform. To- 
gether with the slope m = tan of the tracked reference 
line in the image they allow to directly control the robot's 
trajectory during the docking maneuver (Figure 1 I). 

The reference point together with the camera's fixation 
point determine the final docking position laterally in front 
of the docking object, and the reference line helps to ad- 
just the final orientation of the robot with respect to the 
object. A third constraint is necessary to define the final 
(longitudinal) distance to the object. Although this con- 
straint could also be derived from image primitives (e.g., 
edges of the robot's front at a certain image distance to the 
reference line of the docking object) we have chosen to 
stop the vehicle, for simplicity reasons, at a certain tilt 
angle y,,, corresponding to a sufficiently small distance to 
the front of the docking station (Figure 12c). 

In the current implementation of this docking behavior the 
following assumptions have been made: laws of projective 
geometry apply and the lines of the cameras' CCD chips 
are always in parallel to the even floor; they are also in 
parallel to the robot's front if the pan angle of the camera 
platform a = 0". The camera's pan angle a and its tilt an- 
gle y can be directly obtained from encoder readings of its 
platform. Reference line and reference point of the dock- 
ing object are both visible until the end of the docking 

Figure 12. 
Vision-guided docking behavior: (a), (b) HERMES approaches the docking station while fixating it with its vision system; (c) end 
pose is reached; (d) HERMES' view of the final docking pose 



maneuver, and the reference line must be in parallel to the 
floor. 

Image processing. Prerequisite for tracking and fixating 
objects is a reliable and fast image processing, preferably 
at video rate. In our driving experiments the lower edge of 
the side table has been chosen as reference line, its lower 
right corner as reference point. Only the right camera of 
the vision system is used. The image processing is divided 
into two stages: One, detection of the table: It is based on 
a separation of the floor from all other objects, thus getting 
a contour line of objects standing on the floor; then, 
matching this contour line with a generic 2-D model of 
cubic objects leads to the identification of possible dock- 
ing stations. Two, tracking of the reference features is 
based on simple edge and corner detectors. The angle P of 
the reference line is obtained by linear regression. Adap- 
tive thresholds are used to detect and track the chosen 
features reliably despite specular reflections and difficult 
illumination conditions. The tracking cycle time is 15- 
25 ms depending on the size of the object in the image. 

Robot control. The main idea of the docking behavior is 
to directly derive the steering angle A of the robot's driven 
wheels at each moment from the values of a, ,8 and y in 
order to maneuver the robot into its predefined final dock- 
ing pose (e.g., a = 0°, p = 0°, y = y,,,). The vehicle's 
speed is set to a constant value during the maneuver (ca. 
0.2 mls). Figure 11 shows a typical trajectory that could be 
generated by either of the two different docking behaviors 
which have been developed and tested with HERMES: 

1) The steering angle h is a linear combination of a and P, 
L = a + g(y) P, with the weight function g = k (y,,, - y), 
i.e., is weighted more in the beginning of the docking 
maneuver and less in the end. 

2) A rule-based method with two phases: In the first phase 
the steering angle 1 is controlled to keep a = constant 
(e.g., 30°), which brings the robot closer to the front of the 
docking object on a trajectory that points away from it; the 
end of this phase is reached whenJ is below a certain limit 
(e.g., 1 O). Then, in the beginning of the second phase, 1 is 
set to a which causes the robot to turn almost on spot and 
eventually approach the docking station from the front. 
The first phase is omitted if the robot is already standing 
somewhere in front of the docking station. 

Results. Both implementations of the docking behavior 
yield good results. The robot may start its approach from 
arbitrary poses and stops sufficiently close in the middle of 
the docking station's front, while both front sides (robot 
and table) are in parallel (Figure 12). It is important to 
notice that both the robot's trajectory and the final docking 
pose are directly derived from sensor data (image features 
and encoder readings). They are not calculated from dis- 
tance measurements, kinematic models and inverse per- 
spective transforms with respect to a fixed reference frame 
(world coordinate system). Another advantage is that the 
method is generic and suitable for all kinds of docking or 
goal objects where a reference line and a specific point can 
be defined. In addition, it may be implemented in a cali- 
bration-free or self-calibrating way. 

6 Conclusions 
In this paper our fundamental concepts and principles for 
designing and building intelligent robots have been 
presented. We strongly believe that vision - the sensor 
modality that predominates in nature - is also an eminently 
useful and practical sensor modality for robots. It provides 
rich and timely information on the environment and allows 
real-time recognition of dynamically changing situations. 
Situation-dependent perception and behavior selection 
rather than measurement and control based on quantita- 
tively correct models are additional key factors for ad- 
vanced robots. Motor control commands should be derived 
directly from sensor data, without using world coordinates 
or parameter-dependent computations, such as inverse 
perspective or kinematic transforms. 

Building robots according to these rules and testing them 
intensively in the real world lead to robust and intelligent 
robots with the ability to adapt themselves to modified 
environmental conditions and tasks. Three generations of 
experimental robots, and particularly their visual and be- 
havioral capabilities, have been introduced: an autono- 
mous vehicle, a calibration-free manipulator, and the pro- 
totype of a versatile service robot that will eventually com- 
bine the abilities of both and bring us closer to our long- 
term goal, the intelligent, adaptable and universally em- 
ployable service robot. 
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