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Abstract 

Detecting edges in  images which are distorted 
by unreliable or missing data samples can be done 
using normalized (differential) convolution. This 
work presents a comparison between gradient es- 
timation using normalized convolution and gradi- 
ent estimation using normalized differential con- 
volution with regard to speed, accuracy, and noise- 
sensitivity. 

1 Introduction 

In order to accurately determine position and size 
of objects within an image, accurate edge detec- 
tors are required. Much work has been done in the 
field of edge detectors, with different methods per- 
forming better under different assumptions. As- 
suming no noise in the image, one may find the 
edges by simply writing out the difference equa- 
tion in a certain pixel neighborhood and thresh- 
olding. 

Using more realistic view of the presence of 
noise, Marr and Hildreth [I] proposed to use the 
zero-crossings of the Laplacian of a Gaussian. 

Canny [2] looked for the optimal edge detector 
for an arbitrary edge profile distorted by addi- 
tive Gaussian noise, by numerical optimization of 
three criteria: a) Good detection (high SNR), b) 
Good localization, c) One response per edge. For 
a step edge, he found a solution which is very simi- 
lar to the first derivative of a Gaussian. The edges 
are found a t  the maxima of the edge detector. He 
also found that criteria a) and b) are principally 
incompatible as the first requires a large window, 
and the second requires a small window. 

Pitas and Venetsanopoulos [3] compared filters 
based on nonlinear means and order statistics and 
found that the dispersion edge detector performs 

well with several types of noise. This detector 
sorts the pixel values in a NxN window, and then 
calculates the coefficients wk = i k  - iN2-k, where 
ik is the k-th highest value. The wk are weighted 
and summed, yielding high values for edges. 

More recently, van Vliet [4] proposed to use 
the zero crossing of the PLUS operator (PLUS 
= Laplace + Second Derivative in the Gradient 
Direction) to detect curved edges, as it improves 
on the accuracy of both separate filters by one 
order of magnitude. 

La rd  and Montseney [5] found, by looking a t  
the error distributions of the magnitude and di- 
rection of the gradient, that the direction of the 
gradient behaves more robustly than the mag- 
nitude, if the x and y components are assumed 
to have an unbiased Gaussian error distribution, 
N(O, 0). 

However, none of these methods take the pos- 
sibility into account that information is available 
about the error distribution of individual pixels. 
Errors in the camera system, or the use of ir- 
regular sampling grids can provide a mask image 
which indicates for each pixel the amount of cer- 
tainty one has for that particular pixel. Especially 
in the case of irregular sampling grids a simple 1 
or 0 can indicate whether or not data is available. 

In order to take advantage of these certainty 
masks, Knuttson and Westin [6] ,  [8] present nor- 
malized convolution (NC) and normalized differ- 
ential convolution (NDC). As the NDC generally 
involves a much higher computational load than 
the NC, this work determines the trade-off be- 
tween speed and precision of gradient detection 
for uncertain data. 

The paper is organized as follows: Section 2 
will briefly review the N(D)C theory. In Sec- 
tion 3, both NC and NDC are applied to gradient 
calculation, which yields two gradient estimators. 



Section 4 shows results of a number of tests for 
comparing the estimators. Section 5 draws con- 
clusions based on the results. 

2 Normalized (Differential) Convo- 
lution 

If we consider the mathematical operations of con- 
volution of a data set (for instance, a pixel neigh- 
borhood in an image) with a filter, we can see that 
for one particular data subset (neighborhood), con- 
volution with a W x W filter window is exactly 
equivalent to the inner product of two W2 x 1 
signal vectors. 

Recalling from linear algebra that the inner 
product of a vector with another vector is equiv- 
alent to projecting the first vector on the second, 
we could view convolution as projecting on a base 
vector. Extending this idea, we could also project 
the data on a base which consists of more than one 
base vectors (which need not necessarily span the 
entire M-dimensional space). 

Knowing that projecting vectors on a non-com- 
plete base will result in loss of information, we 
try to find the f;, that minimises (in least-squares 
sense) the error c that we make in projection, that 
is: 

where the denote the components of vector 
Jon the base B, and B denotes the matrix formed 
by putting the base vectors of B in the columns. 
By taking the derivative of E with respect to the 
f h  and equating them to zero, we find: 

where B* denotes the adjoint of B. Note that B* B 
is an N x N matrix, where N denotes the number 
of base vectors in 8 .  This means that it's invert- 
ible so long as the base vectors are not linearly 
dependent: 

Now that we've found the optimal way to map 
the data onto a basis, we'd like to introduce a 
windowing function, so that we can progressively 
lower the influence of pixels that are farther from 
the current pixel's neighborhood. 

Westin shows that Eq. 3 still holds if the base 
vectors & in the columns of B are multiplied by a 
scalar function, provided that this function (Wes- 
tin calls it an applicability function, a )  does not 
introduce dependencies between the base vectors. 
For most bases, this requirement is easily met. 

By symmetry, the same procedure can be ap- 
plied to an applicability function for the data, 

which indicates how valid the data is for each data 
point. Westin calls this the certainty function, c. 
Then, the complete formula for normalized con- 
volution is: 

where A is a diagnonal matrix corresponding to 
the function a ,  and C is a diagonal matrix corre- 
sponding to c. 

In projecting Jon base vectors+& we have ef- 
fectively fitted a linear system, f = ~ ~ ( f ; , ) ~ & .  
Now suppose we have a constant term P in this 
equation, which we are not interested in: J = 
P + x i ( & ) i & .  We could then simply subtract 
components k frofn component 1, yielding a 'dif- 
ferential' vector 6, with components: 

hk = (fk - f l )  = ~ ( b i k  - bil) (5) 

where b i k  denotes the k-th component of the 
i-th base vector and p has been eliminated. But 
there is no particular reason why we chose to com- 
bine (k, 1) component pairs. In fact, we could 
have taken any combination of components, say 
(k, 2), or better still: all combinations (k,l).  

Returning to NC, and writing Eq 4 out in a 
sum, the numerator is a vector with components 
ni = Ck akckbik f k  We see the applicability and 
certainty values ak and ck, which we would also 
like in the differential form. Taking simply the 
product of the ak and a1 of the components k and 
1 we compare, (and similar for the ck and c ~ ) ,  we 
come to: 

The double sum can be rewritten into four single 
sums, using inner product notation: 

As with NC in Eq 4, we now normalize this num- 
ber by multiplying with the inverse of a matrix 
G, whose components are formed by _substituting 
the data vector by the base vectors bj, yielding: 

Gij = (a, c)(a&, cb;.) - (a&, c)(a, cb;.) (8) 

The components of f on B are then: 

Eqs 7 - 9 define normalized differential convo- 
lution. 



3 Estimation of Gradients 

We now apply the base-projection filtering para- 
digm on gradient estimation. In finding the gra- 
dient, we are interested in the local slope of the 
data points. Therefore, we project the data on 
base vectors describing a ramp in the x direction: 
B = { G , & }  = ( 1 , ~ ) .  If we use NDC, the con- 
stant term is removed (as was described above), 
so we need only project on x. Projecting on x 
only, we get: 

Differentiating the Gaussian, gx = -%g, and 
inserting this into Eq 10, we get: 

We now focus our attention on a gradient es- 
timator which, as we will see, resembles NDC in 
a way. The estimator, which we shall call DoNC 
(Derivative-of-NC) is defined by: 

in which @ denotes convolution. The mathemati- 
cal operations are equivalent to NC mapping onto ... 
one base vector bl = (1,1, ..., 1) (which means in- 
terpolation), using c as a certainty function and a 
Gaussian g as applicability function. Writing out 
Eq 12 analytically, we get 

DoNC = 
(C 8 g) (cf 8 gx) - (c @ gx)(cf 8 9) 

(c €3 912 
(13) 

We expect the NDC method to perform better 
under noisy conditions because it fits a sloping 
plane, whereas the DoNC estimator interpolates, 
and then takes a derivative. It is interesting to 
note that Eq 13 and Eq 10 have identical numer- 
ators. 

For industrial applications, speed is also an is- 
sue. As both methods only use convolutions with 
a Gaussian and its derivative, the filters can be 
relatively fast because those convolutions are sep- 
arable in the x and y direction. Note that project- 
ing on more than 1 base vectors would require 
matrix inversions. 

For reference, we have also included a combina- 
tion the SUSAN smoothing method with Deriva- 
tive-of-Gaussian gradient filtering. The SUSAN 
method was reported by Smith [7] to perform best 
among a set of non-linear smoothers. Note that 
the SUSAN method was not designed for the type 
of noise we are subjecting our data to. It does 

a weighted interpolation in a neighborhood, in 
which not only the distance between pixels, but 
also the difference in grey value is weighted: 

where d2 denotes the distance I[?- r:ll, r: is the 
center pixel, t is an intensity threshold and a de- 
termines the window width. 

4 Experimental Results 

The filters were applied to 128x128 pixels, 8-bit 
images containing: a) a sinusoidal wave, b) a 
block pattern, c) the well-known "Lena" image. 
The images were corrupted by a) progressive ran- 
dom data removal, b) 10% data removal with pro- 
gressive additive Gaussian noise, and c) 50% data 
removal with progressive additive Gaussian noise. 
The resulting gradient estimates were compared 
with a 'ground truth' gradient, for which we took 
the exact solution of the gradient for the sinu- 
soid image, and a Derivative-of-Gaussian (DOG) 
with support of a = 1.5 for the block pattern and 
the Lena image. The Gaussians in the NDC and 
DoNC filters were taken with the same a value. 
In the random data removal experiments, the re- 
moval masks were used as certainty functions for 
the NDC and DoNC methods. 

The sinusoidal wave image has an amplitude 50 
around a center grey value 128, and a frequency 
of about 40 pixels per period. The block pattern 
consisted of interleaved 32x32 pixel blocks of pix- 
els with greyvalues 78 and 178. 

The NDC and DoNC methods performed within 
the same speed order of magnitude. On a Sun 
Ultra 10/300, a 256x256 image took about 0.9 
seconds. The SUSAN method was about 7 times 
slower than the NDC and DoNC. 

The results of the experiments concerning ac- 
curacy are combined in Figure 1. Graphs in the 
same row correspond to the same source image, 
graphs in the same column correspond to similar 
noise conditions. 

The NDC performed best for the slowly vary- 
ing gradient in the sinusoidal image and for the 
Lena image. However, it may be noted that all 
three methods behave similarly for additive Gaus- 
sian noise above 20 dB SNR. 

For the block pattern, the Derivative-of-SUSAN 
method performs best because the SUSAN filter 
is good a t  restoring constant greyvalue areas. The 
derivative which is subsequently calculated, is ex- 
actly the same as the ground truth method, yield- 
ing a small difference between the two. 
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Figure 1: Signal-to-noise ratio of the estimated gradient relative to the ground truth gradient, for different 
combinations of noise. The estimators are differential-of-NC (diamonds) , NDC (stars), differential-of-SUSAN 
(squares). 

I t  is interesting t o  note that  the  NDC and [2] J.F. Canny, "A computational approach to edge 
DoNC still have high SNR when 20-40% of the detection", IEEE Transactions on PAMI, vol 
da ta  is removed, even when a non-synthetic im- PAMI-8, pp. 679-698, 1986 

age is used. [3] I. Pita3 and A.N. Venetsanopoulos, "Edge Detec- 
tors Based on Nonlinear Filters", IEEE Transac- 

5 Conclusion tions on PAMI, vol PAMI-8, pp. 539-550, 1986 

In situations where information about the trust- 
worthiness (or even absence) of da ta  is available 
on a per-pixel basis, normalized differential con- 
volution can be  used t o  estimate the gradient in a 
robust way. By using Gaussians and Derivative- 
of-Gaussians for the  base vectors, a separable fil- 
ter can be constructed which allows relatively fast 
evaluation of local gradients. The  DoNC filter, 
which is similar t o  NDC, can be constructed by 
differentiation of the  NC equation; its accuracy 
shows similar behavior, but it has a lower compu- 
tational complexity. Both methods yield approx- 
imately the same results for Gaussian noise worse 
than 20 dB SNR. 
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