
MYA'98 IAPR Workshop on Machine Vision Applications, Nov. 17-19, 1998, Makuhari, Chiba. Japan

3-25
PARALLEL VISION COMPUTING ON A NETWORK OF WORKSTATION CLUSTERS

School of Computing and Information Technology
School of Microelectronic Engineering

Griffith University, Nathan Campus, Brisbane, QLD, Australia 41 11

ABSTRACT the advanced technology of computer network has made

Vision computing involves the execution of a large number
of operations on large sets of structured data. In this paper
we demonstrate that such vision tasks can be implemented
in parallel on a network of workstation clusters for fast pro-
cessing. We introduce some techniques used in distributed
systems and adopt a divide-and-conquer policy to sched-
ule the complex vision tasks for parallelism. The vision-
related algorithms for mask convolution, feature extraction,
discrete Fourier transform and image matching are imple-
mented in parallel using PVM(paralle1 virtual machine). In
addition, a hierarchical object recognition system is described
to conclude that a general distributed system can be applied
to parallel vision computing at a low cost.
Keywords and phrases: Vision computing, parallel imple-
mentation, parallel virtual machine(PVM), feature extrac-
tion, image matching, object recognition.

1. INTRODUCTION

Vision computing is closely allied with three fields: image
processing, pattern classification and scene analysis. It in-
volves many types of computing, ranging from two-dimension
correlation and convolution, to image transformation, ge-
ometric computing and graph analysis. In general vision
computing can be summed as the execution of a large num-
ber of operations on large sets of structured data. One of the
basic data structure in vision algorithm is the two dimen-
sional array. In many cases a vision task is performed by the
application of a set of operations to all the elements of the
image array. When such a task is implemented in sequen-
tial, it is computationally intensive. Thus the conventional
sequential computers are too slow to perform complex vi-
sual tasks in real time. Obviously, the speed-up in com-
puting can be achieved by performing different operations
concurrently on each element of the array. Such a parallel
method lies in the fact that several operators can be applied
to the image simultaneously (MIMD style); or the same op-
erator can be proceeded at different parts of the image at the
same time (SIMD style)[] 1.

In contrast to the conventional parallel solutions which
relied on specialised parallel machine, we explored the po-
tential of distributed systems for parallelism. It is noted that

very high-speed network available (Gigabivsec.). Thus a
distributed computer system can be utilised to replace the
specialised machines for the implementation of vision tasks
and dynamic load balancing for resource allocation. A divide-
and-conquer policy can be adopted for such a scheme, where
a complex task is divided into a number of sub-tasks and
those sub-tasks are later reorganised into clusters accord-
ing to granularity before being mapped on computers for
simultaneous implementation. Due to the nature of parallel
processing used in this scheme, the operation speed can be
increased and real-time issues are considered by coordinat-
ing the priorities of tasks.

This paper is organised as follows: Section 2 briefly
introduce a parallel virtual machine (PVM) as a general-
purpose message-passing architecture which is available on
most of the existing computer system. Some basic vision-
related algorithms and their parallel implementation are high-
lighted in Section 3. Section 4 summarises a parallel object
recognition system on a network of workstation clusters. Fi-
nally the conclusion is presented in Section 5.

la1 2. A PARALLEL VIRTUAL MACHINE (PVM)

PVM is viewed as a general and flexible parallel comput-
ing environment which enables concurrent executions on
loosely coupled networks of processing elements and sup-
ports a message-passing model of synchronization[8]. Thus
it provides a low-cost homogeneous multi-computing envi-
ronment by using existing workstation resources for paral-
lelism. PVM can be implemented on different architectures
such as single CPU systems, vector machines and multipro-
cessors, where the connection between these elements may
be through different networks. The initiation and termina-
tion of processes across the network for a particular appli-
cation are made via a library of standard interface routines.

It should be also emphasized that the relationships be-
tween different processes which are in execution for an ap-
plication are arbitrary and any process may communicate
andlor synchronize with others. Such arbitrary control and
dependency structures characterize the application program
under PVM with the configuration capacity for efficient com-
putation.

3. PARALLEL VISION COMPUTING USING 3.2. Discrete Fourier Transform
PARALLEL VIRTUAL MACHINE (PVM)

Fourier transform is widely used in image processing for

Many vision algorithms can benefit from parallel process-
ing. A divide and conquer approach to vision computing
can be easily implemented in a networking environment.
An image is partitioned into subimages and distributed over
nodes in the network. The local processing results such
as two-dimensional matrix operation, feature detection and
transformation for each subimage are merged over the entire
image. Figure 1 shows the partitioning and processing for
parallel component labeling, where the boundary connec-
tivity of neighboring subimages is represented as a graph.
Hence, the original image represented in one large two-
dimensional matrix (256 x256, or512x512, or 1024x 1024)
is broken into a number of small matrices (subimages). The
success of the parallel implementation using PVM on a clus-
ter of workstations depends on the effective communication
pattern between workstations. In the work reported in this

image enhancement, feature extraction, texture analysis, and
image compression. The following is the mathematical rep-
resentation of the Discrete Fourier Transform for 1 -D sam-
pled function f (2):

F (u) = $ zN-l .=o f (X) ~ X P [- ~ ~ ~ ~ X / N]

foru = l , 1 , 2 ,..., N - land

f (x) = c,":: F(u)exp[j2~ux/N]

forx = 0 ,1 ,2 , ..., N - 1
It is noted that the above summations can be represented

as nested loop structures and can be easily implemented in
parallel using PVM on a network of workstation clusters.
In the work reported here, a number of slave processors are
dedicated to summation and pass the result to the master.
Table 1 lists the speed improvement in comparison to the
traditional sequential execution.

paper, the masterlslave parallel programming paradigm is
adopted. Each workstation represents a node in the network.
One node is selected as the master, and is responsible for
spawning slave nodes that process subimages.

3.3. Image Feature Extraction - The Detection of Inter-
Figure 1. Divide images for parallel labeling esting Points

3.1. Mask Convolution

The mask considered is 5x 5 size and the operation is per-
formed locally on the image. Therefore, the image can be
divided into sub-images with reasonable sizes and the con-
volution operation can be performed on each sub-images
in parallel to speed up the process. In general, the two-
dimensional convolution of the image I(ij) and mask A(ij)
with size 2a+l by 2a+l is given by the relation

for i=0,1, ..., M- l and j=0,1, ..., N-1, where the size of the
image is M x N.

On the average the sequential execution time for each
convolution with 5 x 5 mask on 256 x 256 image implemented
on Classic SPARC workstation is about 5.8 sec. while the
parallel computation with 4 processes increases the process-
ing speed by 15% to 4.96 sec. for each convolution. The
higher speed is expected when more processes are invoked
for parallel implementation.

Most matching algorithms are based on binary images to
identify the interested object(s). Therefore, the original im-
age, either greyscale or color images, should be converted
into a binary image. Traditional methods that convert an
original image into a binary image rely on edge detection.
Despite edge detection has been successfully used for many
years mostly due to its simplicity, it has some problems
which prevent it from being applied on a real-time image
matching scheme, such as:

sensitive to noise in the image,
feature points may not be well distributed,
a large number of feature points with redundancy.

This has prompted the research[4] to use interesting point
detectors rather than edge detectors to extract feature points
from a given image for matching. A number of interesting
point detectors have been developed, e.g. Plessey operator[5]
and Moravec operator[6].

The detection of interesting points is based on the mea-
sure of how interesting a point is. Interesting here has its
own special meanings depending on different applications.
In order to reduce the number of points used for matching
while still preserving the features of the original image, such
points must be distinguishable from immediate neighbours,
which excludes points sitting on the same edge. Moravec[4]

suggested that a point is considered interesting if it has local
maximum of minimal sums of directional variances. For a
local window ranging from 4 x 4 to 8 x 8, the directional
variances can be expressed as

I1 = zilj (I (i , j) - I (i , j + 1))'
2

1 2 = E,,j (I (i , j) - I (i + 1 , d)
13 = EiPj (I (i l j) - I (i + 1, j + 1))

2

14 = EiPj (I (i , j) - I (i + 1, j - 1))
2

where (i , j) represents the elements in the window. The
interestingness of a point is then given by

I (i , j) = m i n (I l , Iz,13,14).
Thus a point whose local maximum is over a pre-set thresh-
old will be considered good as an interesting point, where
the pre-set threshold can be chosen based on the image his-
togram. In the work reported here, the threshold is deter-
mined dynamically for optimal performance based on the
interestingness histogram of the filtered image after Moravec
operation. In addition, both data parallelism and functional
parallelism was applied to the detection of interesting points,
where the calculation of 11, 12, I3 and I4 within a local win-
dow was performed simultaneously while the whole image
was divided into sub-regions for the same operation. The
performance of both sequential and parallel detection of in-
teresting points based on Moravec operator is compared as
below. Table 2 lists the performance evaluation in terms of
the average execution time on different images with various
sizes ranging from 128 x 128 to 512x512.

Table 2: The comparison of execution time

Our test data shows that the processing speed is increased
by parallel detecting interesting points to remove redundant
edge pixels without any specific architecture requirement
for parallelism. It is clear that the speedup will be more ef-
fective when the image size is larger, the algorithm is more
complicated and more processors are used for the parallel
implementation.

3.4. Image Matching

Comparing a template image to a larger target image usu-
ally requires that the the matching algorithm assigns a value
as to how good the match is for every possible overlay posi-
tion of the template image over the target image. The posi-
tion with the best matching measurement such as the lowest
distance is then regarded as being the position of the best
match. Although this method can be highly accurate, de-
pending on the adopted matching algorithm, it is computa-
tionally expensive to search for every possible combination
position of the template window within the target image.

The searching for the best matching can be operated on the
subimages simultaneously. Table 3 shows the effectiveness
of such a parallel matching scheme, where the average value
within the template matrix is used to search for the closest
indices over the original matrix.

Table 3: Slaves and Block Size vs. Execution Time

4. PARALLEL OBJECT RECOGNITION BY
HIERARCHICAL IMAGE MATCHING

The hierarchical guided matching scheme was first intro-
duced by Borgefors[2] in order to reduce the computation
cost required to match two images. We extended it by us-
ing interesting points rather than edge points in a similar
fashion, i.e., an interesting point pyramid is created and the
matching starts from the lowest resolution and the results
of this match guides the search on the possible area of the
higher resolutions. We further extend it by using the Haus-
dorff distance as a measure of similarity instead of Cham-
fer matching. The advantage of using Hausdorff distance
in a matching process relies on the capability of searching
for portions of images, which allows us to partition the tar-
get image into a number of subimages and simultaneously
match the template image on these subimages.

Given two finite point sets A = { a l , ..., a,) and B =
{ b l , . .., b, } , the Hausdorff distance DH between these two
sets is defined as

DH = ~ & x (~ A B , ~ B A)
where dAB is the distance from set A to set B expressed as

~ A R = m a ~ a , ~ ~ (d a , B)
while d , , ~ is the distance from point ai to set B given by

d a , ~ = minb,€B(da,b,)
Obviously the Hausdorff distance DH is the maximum of
dAB and dgA which measures the degree of mismatch be-
tween two sets A and B .

In general, image data are derived from a raster device
and represented by grid points as pixels. For a feature de-
tected image, the characteristic function of the set A and B
can be represented by a binary array A[i , j] and B [i , j] re-
spectively, where the (i , j) th entry in the array is non-zero
for in the array is non-zero for the corresponding feature
pixel in the given image. Therefore, distance array D[i , j]
and D'[i, j] are used to specify for each pixel location (i , j)
the distance to the nearest non-zero pixel of A or B respec-
tively, where D[i , j] denotes the distance transform of A and
D1[i, j] denotes the distance transform of B. Consequently,
the Hausdorff distance as a function of translation can be
determined by computing the pointwise maximum of all the
translated D and D' array in the form of:

F [i , j] = rnax(rnax,, ma%)
where

rnax, = rnax, D[ai - i, a j - j]

ma% = ma% DDl[b; + i, b j + j]
In order to avoid the blind searching for the best fit be-

tween the given patterns, a guided search strategy is essen-
tial to reduce computation burden. Our extension of the hi-
erarchical image matching scheme (H.1.M.S) was based on
a guided searching algorithm that searches first at the low
level, coarse grained images, to the high level, fine grained
images. To do this we needed to obtain a Hausdorff distance
approximation for each possible window combination of the
template and target image at the lowest resolution. Those
that returned a Hausdorff distance approximation equal to
the lowest Hausdorff distance for those images were inves-
tigated at the higher resolution.

To evaluate the performance gain, a system was imple-
mented on a group of networked workstations (8 DECsta-
tions), where PVM (Parallel Virtual Machine) was used to
provide a parallel execution environment. Based on the de-
veloped system, a number of experiments were carried out
to measure the effectiveness of using the hierarchical ap-
proach in matching, and to measure the speedup of using
parallel guided matching against using sequential matching.
The results are shown in Table 4 and 5, respectively. Figure
2 shows an example of object identification and localisation
using our hierarchical matching scheme. Figure 2(a) is a
300x300 target image with certain object to be identified
and Figure 2(b) shows the matching result of our hierarchi-
cal scheme, which returns a match at position (56, 142).

Table 4: Hierarchical image matching scheme

Table 5: Matching a rotated template image

Pyramid levels

1
2
3
4
5

5. CONCLUSION

Parallelism provides more powerful computing ability for
vision systems where simple operations on large set of data
is required. The advanced technology of computer network
has made very high-speed network available. Obviously
such a distributed computer system has the potential to par-
allelize some vision tasks which used to rely on specialised
machines. A parallel object matching system is implemented
on a distributed system, which aims to support real-time im-
age matching. The experiment results confirm the effective-
ness of such an approach in speedup.

image I
(256 x 256)
239.66 sec.
21.36sec.

1.9 sec.
1.32 sec.
1.28 sec.

6. REFERENCES

image 2
(362 x 362)
544.27 sec.
38.12sec.
4.32 sec.
2.18 sec.
2.14 sec. -

[I] H.G. Barrow, J.M. Tenenbaum, R.C. Bolles and H.C. Wolf,
"Parametric corres~ondence and chamfer matching: Two
new techniques for image matching", Proc. 5th Int. Joint
Conf: Artificial Intelligence, Cambridge, MA, pp. 659-663,
1977.

[2] G. Borgefors, "Hierarchical chamfer matching: a parametric
edge matching algorithm", IEEE Trans. Patt. Anal. Machine
Intell., Vol. PAMI-10, pp. 849-865, 1988.

[3] D.P. Huttenlocher, G.A. Klanderman and W.J. Rucklidge,
"Comparing images using the Hausdorff distance", IEEE
Trans. Patt. Anal. Machine Intell., Vol. PAMI-15, pp. 850-
863,1993.

[4] J. You, E. Pissaloux, J.L. Hellec and P. Bonnin, "A guided
image matching approach using Hausdorff distance with in-
teresting points detection", Proc. of IEEE ICIP'94, Austin,
USA, NOV. 13-16. 1994, pp. 968-972.

[5] J.A. Noble, "Finding comers", Image and Computing, Vol.
6, No. 2, 1988.

[6] H.P. Moravec, "Towards automatic visual obstacle avoid-
ance", Proc. 5th Int. Joint Conf: Artrficial Intelligence, Cam-
bridge, MA., pp. 584, 1977.

[7] R. Haralick and L.G. Shapiro, Computer and Robot Vision,
Vol. 2, Addision-Wesley, 1993.

(b) Template ,mq. [8] A1 Geist, A. Beguelin, J. Dongarra, W. Jiang, R. Manchek
and V. Sunderam, PVM: Parallel Virtual Machine, A User's
Guide and Tutorial forNetwork Computing, MIT Press,
Cambridge. MA, 1994.

Figure 2: Object identification and localisation by matching

