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Abstract 

In this paper, we present a new method for detecting curvi- 
linear structures in a gray-scale image. The concept of skeleton 
extraction is introduced to detect more general structures such as 
tapering structures. A skeleton is extracted from the Euclidean 
distance map that is constructed based on the edge map of an 
input image. Then, skeletal points are classified into three types 
(RIDGE, RAVINE and STAIR), and connected points belonging to 
the same type are grouped to form a skeletal segment. Our detec- 
tor satisfies many of desirable properties required of a curvilinear 
structure detector, and moreover it overcomes some limitations 
of conventional approaches. 

1 Introduction 

The term curvilinear structure denotes a line or a curve with 
some width. Curvilinear structures can be found in most natural 
images, but their detection is especially useful, for example, when 
trying to find roads or rivers in aerial images, blood vessels or 
bones in medical images, and characters in text images 

There are many publications addressing the problem of curvi- 
linear structure detection. hlost of recently proposed methods 
are based on one of following three approaches, and some modifi- 
cations or new ideas are added to overcome inherent limitations 
of each approach : 1. Locally parallel edge based approach [I], 2. 
Ridge based differential geometric approach [2], 3. Active contour 
model based approach [3]. 

Since each approach has its own strong and weak points, it 
is an user's responsibility to choose a method appropriate to the 
given situation. However, above approaches have a fundamen- 
tal limitation. Since they are designed to detect only elongated 
structures with small variation of width along their center lines, 
they are not adequate for the detection or description of more 
general structures such as tapering structures. For example, in 
Approach 2, since the centers of a bar-shaped structure are flat, 
a Gaussian filter is applied to make them convex. The size of the 
filter kernel, a should be large enough to detect wide curvilinear 
structures, but, then thin lines or curves are blurred out. There- 
fore, the detectable range of structure's width is confined by the 
given value of a. We could find the structures of different width 
by applying a detector repeatedly with different scales, but it is 
very costly, and it is not easy to integrate the detection results. 

To solve the above problem, we bring the skeleton eztmction 
concept, which is famous in the binary image domain, t o  the 
gray-scale image domain. That is, what we are trying to do in 
this paper is to extract a skeleton from a gray-scale image which 
describes meaningful structures contained in the image. In this 
approach, as will be shown later, a curvilinear structure detection 
problem becomes a sub-problem of classifying skeletal segments 
according to  their property. The proposed detector satisfies many 
of desirable properties required of a curvilinear structure detector, 
and an extracted skeleton is adequate for describing more complex 
structures. 

A skeleton of some region strongly depends on the bound- 
ary of the region according to its definition. Since boundaries 
of regions are not defined clearly in the case of a gray-scale im- 
age, some decision rule should be involved to determine them. 
We make use of detected edgels (edge pixels) as the alternative 
to boundary points though they are imperfect. Once boundary 
points are determined, we can utilize powerful tools which have 
been developed for skeleton extraction in the binary image do- 
main for many years. There are several approaches for extracting 
a skeleton. But, all the approaches are not suitable to our situa- 
tion. For various reasons that will be explained later, we take an 
approach in which the Euclidean distance tmnsfon is performed 
on an edge map, and ridge points (or local maxima), which are 
regarded as candidate skeletal points, are extracted from the con- 
structed Euclidean distance map. Extracted ridge points usually 
contain many unnecessary ones which are caused by noisy bound- 
ary shapes, incomplete edges, etc. In order to remove them, we 
combine several, previously proposed and our own methods effec- 
tively. Remaining ridge points constitute a skeleton. 

Each skeletal point is assigned one of three types (RIDGE, 
RAVINE, and STAIR) by observing the cross-sectional shape of an 
image in the neighborhood of the point. Then, connected points 
of the same type are grouped to form a skeletal segment with the 
single type label. Unstably labeled skeletal points are reclassi- 
fied depending on their neighboring segments' types. This clas- 
sification procedure, together with the Euclidean distance map, 
enables us to find curvilinear structures with the selected width. 

2 Skeleton Extraction 

In this section, skeleton extraction in a gray-scale image is 
considered in detail. The skeleton extraction procedure is com- 
posed of many steps, and it,s overall flow is shown in Figure 1. 

Step 1. detecting edgels : The skeleton extraction procedure 
begins with the detection of edgels in an input gray-scale image. 
Detected edgels serve as boundary points of meaningful struc- 
tures. In our work, the Canny edge detector is used because of 
its many desirable properties such as optimality on singnal-to- 
noise ratio and localization, scale-space representation, and so 
on [4]. Canny's method consists mainly of four parts : Gaussian 
smoothing, gradient computation, nonmaxima suppression, and 
hysteresis thresholding. Three parameters are involved in the al- 
gorithm : the size of a Gaussian kernel, u in Gaussian smoothing, 
and two thresholds, and Th in hysteresis thresholding. After 
edgels are detected, isolated edgels are removed. 

Step 2. constructing an Euclidean distance map : We 
adopted the "medial axis extraction from a distance map" ap- 
proach among several existing skeletonization approaches, be- 
cause it was considered to be most adequate to our situation. 
For example, it does not require closed boundary contours, and 
it provides the width of a detected structure. We use the re- 
gion growing Euclidean distance tmnsfon algorithm proposed 
by Cuisenaire (51. It yields as a result an Euclidean distance map 
where each pixel site has the distance value to the nearest edgel, 
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Figure 1: Skeleton extraction procedure 

and the position of the edgel. The algorithm starts computing 
a distance a t  each edgel, and the computation region grows out,- 
ward. Since former results are used to calculate a distance at  a 
new pixel site, the algorithm is fast and efficient. 

S t ep  3. detecting ridge points : Ridge points or local max- 
ima of a distance map constitute candidate skeletal points. We 
implemented the algorithm proposed by Arcelli and Baja which 
is specially designed to detect ridges in a distance map [6]. One 
of advantages of this method is to guarantee connectedness of 
ridges. In the algorithm, strong ridge points are searched for in 
the raster scan manner, and for each strong ridge point which has 
been met, weak ndge points are tracked starting from it. Strong 
ridge points can be found using eight predefined operators. The 
tracking of weak ridge points is based on gradient computation 
between two neighboring points. Extracted ridges are thinned to 
be one pixel wide. 

S tep  4. removing unnecessary ridge points : Step 3 results 
in a superfluous number of ridge points due to noisy boundaries. 
Therefore, it needs to remove ridge points that make little con- 
tribution to the description of meaningful structures. hlalandain 
and Fern6ndez-Vidal introduced two parameters 4 and d for the 
local characterization of skeletal points [7]. The meaning of 4 and 
d can be understood easily in Figure 2, where p and n represent a 
skeletal point (i.e. ridge point) and its neighbor respectively, and 
ep and e,, are the corresponding nearest boundary points (i.e. 
edgels). Parameters 4 and d of a skeletal point p are given by 
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where N(p)  denotes an eight-connected neighborhood of p. Note 
that in general, the value of q5 is small at  a point which lies on 
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Figure 3: Problems caused by the use of edgels as boundary 
points. 

a skeletal branch generated by small protrusions of boundaries, 
compared to that of a point on a main skeleton. Simple threshold- 
ing of the parameter @ is insufficient to remcrve unnecessary ridge 
points effectively, since it does not preserve the important topo- 
logical structure of an original shape. To solve the problem, the 
two thresholds scheme is adopted where two thresholds @h and Q1 
(Oh > 61) are used to produce two skeletons Sh and Sl (S,, C Sl)  
respectively. Based on Sh and 4, a method called topological 
reconstmctzon is performed to get a robust skeleton 171. 

S tep  5. disconnecting skeletal points : It is easy to under- 
stand that points in a skeleton can be categorized into three kinds 
of points (i.e. end, link, and junction points) according to their 
role in a set of connected points. And, it can be shown that they 
can be identified by observing their eight neighboring points. In 
our case, however, identifying the points without taking edgels 
into account causes problems depicted in Figure 3. Two skele- 
tal points pl and p2 in Figure 3(a) are connected to each other, 
considering an eight-connected neighborhood. But, they should 
be regared as disconnected, since they are crossing an edge which 
serves as a boundary. Let Sand  E denote skeletal and edge point 
sets respectively, and let P = S U E .  Points to be disconnected 
can be found in P using two operators in Figure 4, where p repre- 
sents a skeletal point under consideration, and n and e designate 
neighboring skeletal and edge points respectively. P is scanned 
sequentially, and if at  least one operator in Figure 4 applies suc- 
cessfully at a point p, p and n are marked in S. After scanning 
of P has been completed, points in S are identified as end, link, 
and junction points. If a point p in S ,  which is to be identi- 
fied, is a marked point, other marked neighbors of p are removed 
temporarily, and p is identified. Then, the removed neighboring 
points are restored. Let Q denote the resultant set of identified 
skeletal points. 

The problem depicted in Figure 3(b) happens due to imperfect 
detection of edges. In the case of a Canny edge detector, detection 
of edgels sometimes fails particularly near junctions, which results 
in unwanted skeletal points like ps in Figure 3(b). Such points 
cannot be removed by the method introduced in Step 4, since 
most of them have the value of @ close to 180'. Therefore, they 
should be treated separately. Figure 5 illustrates a scene near the 
incomplete junction of edges, where p, is a skeletal point to be 
removed, and our aim is to find p,. What to do first is to find 
a region containing p,, which is represented by a square R in 
Figure 5. The center of R is located on the end point of an edge 
(e, in the figure), and its width w is given as twice the maximum 
of expected gap width between edges. A point p:, which is a 
candidate for p,, is searched for in R using the assumption that p, 
is the point closest toe ,  among skeletal points on a line extended 
from e, in the direction of el*, where el is a neighboring link 
edgel of e,. Actually, p: is given by 

Figure 2: Definition of two parameters 4 and d. 
Figure 4: Operators for finding skeletal points to be discon- 
nected. 
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Figure 5: Scene near the incomplete junction of edges. 

where Qlinb represents a set of link points belonging to Q. It is an 
import_ant condition in Equation 4 that the angle B between el& 
and e,p> should be small (i.e. 0 < arctan ?), since if we choose 
the skeletal point closest to e, as p:, not taking the angle into 
consideration, it will produce an undesirable result such as the 
point p l  in Figure 6(a). 

All p:'s satisfying Equation 3 are not accepted as p, due to 
the problem illustrated in Figure 6(b). In this figure, the point 
pz also satisfies Equation 3, hut removing p2 seems to cause an 
unnatural disconnected skeleton. It is because the gap width at  
e, is almost the same as the width of the structure represented 
by the skeleton. Thus, it is important to measure how rapidly 
the width of the structure varies in the vicinity of p i .  Let S, 
denote a skeletal segment containing p:. We can consider two 
points p, and ph (p,, pb E S,) farthest from p; within the circle 
C centered on pi  with the radius r (see Figure 5). The points 
pa and pb can be obtained by tracking points belonging to S,, 
starting from p: in opposite directions. Tkacking stops when it 
reaches the end points of S, or the boundary of the circle C. The 
last points tracked become p, and ph. We use the parameter d 
in Equation 2 to measure the deviation of the structure's width 
within C. The radius r of C is given as 2d(p:). The point p: is 
accepted as p,, if the condition 

holds where df is an user-specified deviation factor. Then, p, is 
removed from Q, and its neighbors are identified again. 

S t e p  6. pruning skeleton branches : In Step 5, some skeletal 
segments are split up intentionally, which may result in some 
noisy skeletal branches that are not useful t o  shape analysis. 
Thus, we need to prune such branches. We use Arcelli and Baja's 
pruning algorithm because of its simplicity and efficiency (81. 
Pruning starts from an end point of each branch. For each skeletal 
point p in the branch that ends with p,, the quantity 

is computed where hld represents the distance map obtained in 
Step 2. If r is less than a given threshold T,, p is removed from 
the branch, and pruning goes on. It is stopped when either r be- 
comes greater than or equal to T,. or the other end of the branch - . . 
is reached. The quantity r (p ,  p,) in Equation 6 can be interpreted 
as the loss of information we get, in terms of reconstruction of 
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Figure 6: Two important factors in determining p,. 

an initial shape, if the branch from p to pb is pruned away. Af- 
ter pruning has been finished, very short branches dangling from 
main skeletal segments are deleted. 

S t e p  7. beautifying a skeleton : Beautifying a skeleton means 
streightening its zigzags that are mostly caused by the unit-width 
thinning operation. Refer to [8] for the detailed algorithm. 

3 Skeletal Segment Classification 

Since we are dealing with a gray-scale image, not a binary im- 
age, it is meaningful to provide the skeleton obtained in section 2 
with an ability to describe the gray-scale intensity information 
of underlying structures as well as their shapes. Each skeletal 
point can be classified as one of three types (RIDGE, RAVINE, 
and STAIR) according to the cross-sectional shape of the image 
in its neighborhood. A typical example of a cross-sectional shape 
for each type is shown in the first column of Figure 7. In our 
method, the direction and the size of the cross-section at  the p c ~  
sition of a skeletal point p are decided by p and its two nearest 
edgels e, and e,, (see Figure 2). To speak more exactly, the inten- 
sity of pixels lying on two line segments e,p and pel, (from en to 
ep through p) constitute the profile of the cross-section. Let L, 
denote a set of pixels on F J i  and except en  and ep, and let 
I(p) denote a gray-scale intensity value at  p. It should be noted 
that it is reasonable to use the Gaussian smoothed version of an 
input image whose value of u is equal to that of a Canny edge 
detector, rather than an input gray-scale image directly, since I ~ F  
cations of edges, which serve as boundaries of structures to be 
detected, are affected by the value of u. To which type p belongs 
is determined by the following rule : 

if (i,,,,(p) > e,,,(p) and irnin(~) > ennin(~)) 
p is labeled RIDGE; // See Figure 7(a) and (b). 

else if (i,,,,,(p) < ern,(p) and &nin(p) < err,in(~)) 
p is labeled RAVINE; // See Figure 7(c) and (d). 

else if (i,,,,(p) < e,,,(p) and imin(p) > emin(p)) 
p is labeled STAIR; // See Figure 7(e) and (f). 

else { 
if ((ernin(p) - i,nin(~)) < (&naz(~)  - ern in(^))) 

p is labeled RIDGE; 
else p is labeled RAVINE; // See Figure 7(g). 

1 
where 

i,,,,(p) = max I(q), irnin(~) = min I(q), 
4E I.11 qc LP 

emo2(p) = max (I(ep)>I(en)), emi"(p) = min (I(ep),I(en)). (8) 
The above rule can be understood intuitively by looking a t  

Figure 7. Attention should be paid particularly to  the second 
column of the figure where each profile represents a special case 
of the corrsponding type. For example, Figure 7(b) looks different 
from the cross-section of a typical ridge like (a), where the peak of 
the profile is positioned far from the center of the structure, and 
moreover, the intensity value at  the center p is less than the value 
at the boundary point ep. In fact, such deviations from a standard 
ridge shape make a curvilinear structure detector distinguished 
from a simple ridge detector, as pointed out in 121. 

After all skeletal points have been classified and labeled, con- 
nected points with the same label are grouped to form a skeletal 
segment with the single type label. Note that grouping cannot be 
continued beyond junction points. Skeletal segments with their 
length less than or equal to a threshold T, (T, is usually small) 
are relabeled UNDETERMINED because they seem to be unstable 
and noisy. If they are adjacent to stable segments whose length is 
greater than T,, the points belonging to the unstable segments are 
merged iteratively to the nearest stable segments. Figure 8(a)- 
(d) illustrate this process. And, each isolated segment labeled 
UNDETERMINED is reassigned a new type such that the num- 
ber of points belonging to the type is maximum in that segment. 
For example, a segment in Figure 8(e) gets labeled RIDGE, since 
points labeled RlDGE are dominant in the segment. 
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4 Experimental Results and Remarks 
References 

One of the results obtained with the proposed method is 
shown in Figure 9, where three types of structures detectable with 
our method are displayed with different colors of lines. This fig- 
ure illustrates main features of our method well. From the figure, 
one can see that our method enables us to find a variety of curvi- 
linear structures of different width and type concurrently. Since 
most of conventional detectors are intended to  detect curvilinear 
structures with uniform width such as the structure indicated by 
(a) in Figure 9, they have a common weakness that they detect 
only parts of tapering structures like (b). But, our detector is 
capable of finding more complex structures, e.g. (c) in the figure, 
as well as tapering structures. 

Another result is given in Figure 10, where only ridge-like 
structures are marked whose width is within the range of 2 to  
9 pixels. The width at  a skeletal point p is defined as 2Md(p). 
This figure shows the ability of our method to  select the width of 
curvilinear structures to be detected. 

We are now concentrating on developing an algorithm for re- 
gion segmentation based on the above result. This work is closely 
related with the reconstruction of an initial shape from its skele- 
ton. We are also investigating the possibility of hierarchical de- 
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Figure 8: Relabeling of unstable skeletal points (T, = 3). (a) 
Construction of initial skeletal segments. (b) Segments with the 
length less than T, are relabled UNDETERMINED. (c) Merging 
: after the first iteration. (d) hlerging : after the second itera- 
tion. hlerging has been finished. (e) Isolated short segment. (f) 
Relabeling result for the segment in (e). 
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Figure 10: Another example. Parameter values used are equal 
to those in Figure 9. 
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