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Abstract 

This paper introduces a way to locate persons in 
visual images of cluttered scenes using a shape-of- 
contour approach. The contour which we refer to 
is that of the upper body of frontally aligned per- 
sons. After deriving an approximation of it using 
a set of example images we take a spatial arrange- 
m e n t  of steerable filters to determine the pointwise 
orientation along the contour. 

However, the application of the filter arrangement 
typically yields a coarse distributed outcome. To 
select the most promising location, we apply a dy- 
namic pattern formation within a three-dimensional 
dynamic neural field to get a localization even con- 
sidering the distance of a person. It turned out that 
by means of simple homogeneous internal interac- 
tion rules the dynamic neural field can find robust 
localization solutions. The activity of the field-neu- 
rons can be considered as internal state enabling a 
permanent  localization helpful for tracking the per- 
son. 

1 Introduction 

In a framework of an image-based gesture recog- 
nition system on board of our mobile robot plat- 
form MILVA the localization of a user's head has es- 
sential importance, since it is a prerequisite for any 
further gesture-related analyses. In this context of 
gesture-based human-robot interaction, the present 
work deals with the visual localization of persons in 
real-world environments. Further, solving a localiza- 
tion problem is particularly of interest if a person is 
rather distant. Necessarily, relevant features should 
appear even on rather coarse resolutional scales so 
that details, as facial structures, clearly are less ap- 
propriate. 

We think, especially in real-world scenes a per- 
son's outer contour shape represents the most ap- 
propriate invariant. Our simple contour shape pro- 
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totype model consists of an arrangement of oriented 
filters doing a piecewise approximation of the upper 
shape (head, shoulder) of a frontally aligned per- 
son. The arrangement itself was learnt based on a 
set of training images. Applying such filter arrange- 
ment in a multi-resolution manner, this leads to a 
robust localization of frontally aligned persons even 
in depth. 

The central problem of selecting the most promis- 
ing (salient) image region is treated by means of a 
three-dimensional dynamic  neural field performing 
a winner-take-all (WTA) process (blob-like pattern 
formation, see [I]). In future work such neural field 
will be used for merging with further visual cues 
(e. g. skin color) appropriate for person localization. 

2 Arrangements of Steera.ble Filters 

2.1 Motivation and Related Work 

Our idea refers just to a description of the outer 
shape of head and shoulders, whereas the interest- 
ing and independently developed approach of Oren 
and Papageorgiou [7] considers the complete body of 
persons (pedestrians) using Haar wavelet templates. 
The common aspect between the two approaches is 
a set of locally distributed oriented filters used to de- 
termine the strength of certain orientations of visual 
"structure" for a small region. 

The idea of a contour-shape based approach for 
saliency is based on some physiological considera- 
tions as well as on psychophysical effects. The visual 
cortex consists in several parts of cells with oriented 
receptive fields. Thus, referred to a retinal position, 
broad ranges of the frequency space are covered by 
a set of oriented filters. A lot of investigations have 
exposed that the profile of receptive fields of simple 
cells in the mammalian primary visual cortex can 
be modeled by some two-dimensional mathematical 
functions. Gaborian [4] and Gaussian (incl. low or- 
der derivatives) [5, 81 appear to provide the typical 
profiles for visual receptive fields. So, local opera- 
tions decomposing the visual information with re- 
spect to the frequency space are made. 



Psychophysical aspects related with the contour- 
shape based approach as, e. g., good continuation or 
symmetry (both belonging to the Gestalt laws [6]), 
obviously describe effects which necessitate grouping 
mechanisms. Against this background, we concep- 
tualized the approach of an arrangement of oriented 
filters. 

Because each section of the contour should be ap- 
proximated by a special oriented filter, localizing a 
person would require possibly as much differently 
oriented filters as orientations belong to the arrange- 
ment. Since this is computationally very costly we 
turn to use steerable filters (see below). 

2.2 Determining the Course of Contour 

In our previous work [2] we used an heuristically 
defined model of the contour. It was based on a 
manual design restricting to just four filter orien- 
tations. Obviously, one would have a more precise 
model using more than four orientations, i.e. the 
contour model should be closely related to real data. 

Steerable filters have the nice property that an 
initially limited number of convolutions is sufficient 
to derive any orientation information within an im- 
age. Thus, their use provides an extended set of 
orientations, avoids the necessity of numerous addi- 
tional filters, and enables a more accurate computa- 
tion of the course of contour. 

Our complete data set consists of images showing 
ten persons in front of a homogeneous background 
under three different viewing angles (0°, +lo0 and 
-lo0, where 0" correspond to an exactly frontal 
aligned face). All these images have been recorded 
on identic conditions (position, illumination, dis- 
tance). Additionally, in order to have a symmet- 
rical response the whole data set was vertically mir- 
rored extending the data set to  60 images. Subse- 
quently, the 256 x 256-images (grayscale) were low- 
pass-filtered and subsampled resulting in the size 
16 x 16. Then, we applied a Sobel operator to the 
images enhancing the edges of each image. Next, all 
of those edge-marked intermediate images are aver- 
aged, since the contour to be determined, on average 
should match the real outer contour. After this we 
thresholded to find that edge representing the typ- 
ical contour shape. High threshold values result in 
gaps within the contour, whereas low ones yield too 
broad contours. 

Now, we have the course of the contour of inter- 
est resulting in a 16 x 16 binary matrix where the 
elements along the contour are set to 1, the others 
remain 0. We refer to this contour matrix, our tem- 
plate, as A. What is further of interest is the local 
orientation of each contour element. It is achieved by 
means of the steerable filters (see below) applied to 
the binary contour shape so that for each element of 

A an angle of orientation can be determined. Fig. 1 
illustrates both the course of the shape of contour 
and the local orientations. 

Figure 1: The determined orien- 
tation angles along the shape of 
contour A: the angles are coded 
as gray values from 0' (black) to 
180" (white). Around the parting 
transitions from 180' to 0" occur. 

2.3 Applying Steerable Filters 

The previous task provides a binary image repre- 
senting an averaged head-shoulder-portrait but gives 
no information about the local orientation a t  a given 
contour point. After determining the contour, we 
measure the local orientation by means of a set of fil- 
ters which are oriented in every direction. This again 
could be done, e. g., using the conventional Gabor- 
type filters, but it requires the choice of certain ori- 
ented (pair of) filters each of them differing from the 
others by a certain small rotation. In this case each 
filter pair corresponds to  that angle the filter is tuned 
to. This also means that the orientation at a point 
of the contour is provided by the filter pair which 
has maximal response in this point. Unfortunately, 
by such an approach there is a trade-off between the 
required exactness of the orientation value and the 
number of filters. The more exactly the measure of 
the orientation has to be, the more filters (e.g. cer- 
tain orientation) we have to choose. In this paper, 
we consider a different approach using steerable fil- 
ters [3] for orientation estimation. This approach 
provides an efficient filtering output by applying a 
few basis filters corresponding to a few angles and 
then interpolating the basis filter responses in the 
desired direction. Steerable filters are computation- 
ally efficiency and do not suffer from the orientation 
selection problem. 

In general, a function f (.) is considered steerable 
if the following two conditions are satisfied. First, its 
basis filter set is made up of their M rotated copies 
f a '  (.) . . . fa"(.) on any certain angles crl . . . CYM. 

Second, a rotated copy fB( . )  of it on some angle 6 
has to be obtained by a superimposition of its basis 
set times interpolation functions kj(d) as 

In our work we take a quadrature pair by using 
the second order derivative of a Gaussian and an 
approximation of its Hilbert transform by a third- 
order polynomial modulating a Gaussian. From the 
steering theorem [3] these functions are steerable and 
need M = 7 basis functions (see fig. 2). 



Figure 2: The basis filter set: upper row with 3 basis 
functions (second order derivative of Gaussian), bot- 
tom row with 4 more basis functions (Hilbert trans- 
form of the second derivative of Gaussian). 

To measure the orientation along the contour, we 
use the phase independent squared sum of the out- 
put of the quadrature pair. This squared response 
as a function of the filter orientation a t  a point (x, y) 
represents an oriented energy E("?Y) (6).  Because of 
the symmetry of the fiinctions, the energy at ev- 
ery pixel is periodic of period .rr. To accurately 
estimate the dominant local orientation one could 
pointwise maximize the orientation energy by taking 
6$$y = argmax{~(.',"(6) 1 I9 E [0, x)) .  However, 
t,o find this maximum value we do not search degree- 
wise for the maximum because there already exists 
an analytical solution for the maximization [3]. We 
further refer to the matrix of all these angular values 
6$'& corresponding to the image as O. 

Unlike a Gabor-type filter approach, the process- 
ing scheme by steerable filters requires no additional 
convolution after the initial pass through the seven 
basis filters. Moreover, we choose these certain steer- 
able filters because there exists a separable basis set 
in Cartesian coordinates which considerably lowers 
the computational costs. 

3 Dynamic Neural Fields for Local- 
izat ion 

3.1 Computing the Neural Field Input 

The previous section describes the theory and 
use of steerable filters. By means of those filters 
we calculate both the matrix A describing a typical 
course of the head-shoulder-portrait and that matrix 
O (corresponding to the image wherein a person is 
to be found) containing the dominant local orienta- 
tion values. 

Subsequently, we are going to search for the pres- 
ence of the visual cue head-shoulder-portrait, repre- 
sented by the kernel A, within the matrix O. To 
do this, we utilize a matching technique based on a 
similarity measure m(x4) .  Due to the x-periodicity 
of the outcome of the steerable filters and in order 

to properly describe the likeness between two ele- 
ments of A and 0, the similarity function requires 
the same periodicity. 

m ( x , y )  = X i , j # O  

2 card (supp (A)) 
(2) 

Herein, Xi,.i refers to the element of A at posi- 
( x + z - ~ , Y + ~ - ~ )  tion (i, j) and d M A  3 to the one of 0 at 

(x + i - i, y + j - 5). I = J = 16 represent the 
dimensions of the matrix A. The normalization to 
the cardinality of the support of A (the support of 
a matrix considers only nonzero elements) ensures 
m ( x l ~ )  E [O, 11 for the further processing. 

3.2 The 3D Nonlinear Dynamic Field 

To achieve a good localization, a selection mech- 
anism is needed to  make one definite choice among 
those regions within the pyramid where rather high 
similarity measures are heaped. Since dynamic neu- 
ral fields are powerful for dynamic selection and pat- 
tern formation using simple homogeneous int,ernal 
interaction rules, we adapted them for our purposes. 
Because we use five fine to coarse resolutions in our 
scale space (see fig. 3) we actually can localize per- 
sons even in different distances. Therefore, a neural 
field for selecting the most salient region should be 
three-dimensional. That field F can be described 
as recurrent nonlinear dynamic system. Regarding 
to the selection task, we need a dynamic behavior 
which leads to one local region of active neurons 
successfully competing against the others, i. e. the 
formation of one single blob of active neurons as an 
equilibrium state of the field. The following equation 
describes the system: 

Herein r' denotes the three-dimensional coordinate 
of a neuron position in the field, z( r ' , t )  is the ac- 
tivation of a neuron r' a t  time t,  y(7, t )  is the out- 
put activity of this neuron computed as a sigmoidal 
function of r' alone, x(F, t)  denotes the external in- 
put (corresponds to the re-coded similarity measure 
m", cf. equation 2 and see fig. 3), h(t) is the global 
inhibition a t  time t gathering the activity from each 
neuron over the entire field F 5 R3. w(r'-  r ' )  de- 
notes the Mexican-hat-like function of lateral acti- 
vation of neuron r' from the surrounding neighbor- 
hood N g I R ~ .  For one 7, N is symbolically marked 



as dark regions in fig. 3 (right). The constants ch, 
cc and ci represent parameters of the system. 

As also illustrated in fig. 3, to use a three-dimen- 
sional neural field, we have to  consider the local cor- 
respondences between the resolution levels. There- 
fore, we do a re-coding into a cuboid structure. One 
side effect is that the coarser a pyramid level is the 
less we can locate something by means of the similar- 
ity measure. However, without particularly treating 
this effect we just noticed that those levels z of the 
neural field activated from the rather coarse pyra- 
mid levels take little more steps to develop a blob 
(or a part of a blob, respectively). 

Figure 3: Processing steps for person localization. 
Starting from a multi-resolution representation of 
the image, each level is treated by steerable filters. 
Applying the filter arrangement we determine a dis- 
tance measure which is taken as input of a three- 
dimensional field of dynamic neurons. The resulting 
blob (locally delimited pattern of active neurons) is 
used to localize a person. 

3.3 Results 

The results of the system are qualitatively illus- 
trated in fig. 4. The images of the rightmost column 
show the state of the five layers of the dynamic neu- 
ral field in a snapshot a t  that moment when the 
activity change of the most active neuron became 
less than 1%. On average, the system takes 11 iter- 
ation steps using a time-discrete Euler method. The 
range of the blob is not restricted to one plane. To 
get a more precise specification of the distance of a 
person one could interpolate the z-coordinate of the 
blob center within the field. 

Our presented results are exemplary, the usage of 
the shape of contour provides one solution for the 
person localization problem, even under quite dif- 
ferent conditions. Other results unfortunately can- 
not be shown here for briefness reasons. The novel 
approach with a three-dimensional dynamic neural 
field can be assessed as robust method for the selec- 
tion process. 
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Figure 4: Localization results in an indoor environ- 
ment: The localization of a person does not sharply 
appear a t  one of the pyramidal planes, the originat- 
ing spatial blob (rightmost column) is most strongly 
developed on the central of the five planes. Each row 
contains the results of one of the five (distance I/&) 
computed resolution steps. The seven columns de- 
pict the following: input, results of the orientation 
filtering for selected angles 0°, 45O, 90' and 135", 
the result of the filtering with the filter arrangement 
and finally the result of the selection within a three- 
dimensional field of dynamic neurons. 
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