
MYA '98 IAPR Workshop on Machine Vision Applications, Nov. 17-19, 1998, Makuhari, Chiba. Japan

1-3
Randomized Adaptive Algorithms for Mosaicing Systems

Frank N i e l s e n *

SONY COMPUTER SCIENCE LABORATORY INC.

Abstract

Image-based rendering is a recent trendy area
which aims to provide users with convincing pho-
torealistic computer graphics in real time. In this
paper, we mainly concentrate on randomized algo-
rithms for finding the fundamental perspective ma-
trix that relates two given pixelized images by ap-
plying Monte-Carlo randomized algorithms. Since
the approach is rather generic, we derive an adap-
tive system which registers a sequence of images by
choosing a trade-off between the generated image-
matching quality and the time required to get an
approximation of an ideal perspective transforma-
tion.

1 Introduction and motivations

Image-rendering systems are currently widely
used since geometric models (surfaces, volumetric
models, etc.) have been quite difficult to obtain
from images. In this paper, we present a random-
ized heuristic for computing the perspective matrix
that relates two images to each other. We describe
some combinatorial geometric randomized methods
based on photogrammetry which improves the run-
ning time of deterministic authoring systems. The
method we propose below is fully automatic, does
not require any human interactions and may be ap-
plied to high picture definition as well as movie com-
pression.

2 What is mosaicing ?

Mosaicing consists in taking a sequence of still
image pictures and provide a collection of transfor-
mations to join them into one blended picture. It
is well-known [I] that in the case of images taken
from a same three-dimensional viewpoint (with a
pinhole-model camera), the transformation related
these images are homographies (or collineations), de-
fined up to a scalar factor, in the projective plane P2.
Let H be such a transformation. Let pl and p2 be

Address: 3-14-13 Higashi-Gotanda, Shinagawa, Tokyo
141-0022, Japan. E-mail : nielsenQcsl.sony .co. jp

the pixel points in image I1 and 1 2 that are the re-
spective perspective projection of the same physical
three-dimensional points p. Using the homogeneous
coordinates for pl and p2, we get:

with pl = (Fg) and pz = (2E).
There are mainly two widely used techniques that

have been employed in the past: the first one con-
sists in geometric registration where the collineation
is often restricted to similitudes on the plane (and
not a full perspective collineation). The second one
is based on Fourier principles and is called the phase
cowelation method [2, 31. Recently, Szeliski and
Shum presented an elegant and robust method for
creating full mosaics and texturing them onto a poly-
hedron [4].

3 General randomized techniques

We apply random sampling (see also [5, 6)) to
algorithms that match features. We would like to
find a perspective transformation that maps one pic-
ture I1 to another 1 2 in order to produce a single
picture. If pl is the perspective projected point of
the three-dimensional point p in image 11, and p is
also visible (i.e., not obstructed) in picture image
12. Then pa = Hpl, with pl = (zl yl I)=. Let
us extract nl features (edges, corners, triple junc-
tions, etc.) S1 from I1 and n2 features S 2 from 12.

We aim at matching, by an appropriate collineation
H, as many as possible features. We initially at-
tach to each detected feature a vector of character-
istics describing the neighborhood where the feature
has been extracted (e.g., intensity values, qualitative
measures). We say that a point pl in Sl matched a
point p2 in S2 for a collineation H if dz(p2, Hpl) 5 E

(for some given E 2 0) and if their corresponding fea-
tures correlate satisfactorily. Let HSl be the set of
points {Hplp E S1). We distinguish between three
families of matchings:

Pixel Cross-Corellation. We use as a scoring

function for H the zero mean cross-correlation
on subwindows centered at extracted points.

The Haussdorf matching. Each point p2 E S 2 is
associated to its closest neighbor of HSl . Even-
tually several points of S 2 may be attached to
a same point of HSl. Each associated pair of
points defines an edge of the graph whose nodes
are the point set HSl US2. The score of a Hauss-
dorf matching is set to be the maximum edge
length of any pair of matched points. (See also
the directed partial Haussdorf distance.)

The bottleneck matching. The bottleneck mea-
sure [7, 81 reflects in a better way the similar-
ity of point sets. We consider the complete
bipartite graph G = (HSl,S2,E), where E is
the set of all weighted edges e = (pl , pz) where
w(e) = d2(pl ,m). Let 6, be the restricted bi-
partite graph to all edges of weights less than c.
The bottleneck matching is a maximum match-
ing, often not perfect matching, of G,.

Let m = [&,I be the number of edges of 6,
and n = nl + n2 be the number of vertices. Per-
fect/maximum matchings in general weighted graph,
where one wants to minimize the sum of matched
edges, require O(n3) time [9] using the so-called
Hungarian method. On the other hand, on un-
weighted bipartite graphs, a maximum matching can
be found whenever it exists in time O (m f i [lo].
When considering geometric graphs, i.e., graphs ob-
tained from a geometric scene, Vaidya [ll] gave
an 0(n$)-time algorithm for matching two points
sets so that the sum of the matched edges is min-
imized. Considering the L, distance instead of
the L2 distance, Vaidya obtained an O(n2 log3n)-
time algorithm. Later on, those results where im-
proved by Agarwal et al. [12] to O(n2+7) for any
arbitrary small positive 7 > 0. Very recently,
Efrat and Itai [13] using an implicit form of the
geometric graph reported nearly o(n9)-time algo-
rithm for computing a longuest matching that mini-
mizes the maximum edge length among all matched
edges. Further refinements of their algorithm has
been achieved by using dynamic data-structures for
fat objects [19]. (See also the work of Heffernan and
Schirra [14] for approximation schemes.) Another
classic approach to pattern matching, first developed
by Huttenlocher et al. [15], is to perform a branch-
and-bound strategy on some search space; For exam-
ple, the coefficients of the matrix coding an affine
transformation, define a 6-dimensional space. The
algorithms start with a given box containing an op-
timal solution, splits the current box into subboxes,
kill some of them (those where the current best so-
lution is better than any solution provided by them)
and branch on the remaining active subboxes. The

process stops whenever an "acceptable" solution is
found (depends on the required precision). Very
recently, those methods have been extended using
alignment as in Mount et al. [16] and, Hagedoorn
and Veltkamp [17]. Our algorithm extends the com-
binatorial Monte-Carlo approach using properties of
the Euclidean/projective space of point features.

Let a be the percentage of points required
to match up to an absolute error e (that is
max{[a(S1(1, [a(S2(l) points at least). Parameter CY

is useful in practice since it reflects the perspective
distribution of common feature points and possibly
occluding parts (hidden features). Let k be the num-
ber of features required in S1 and S2 for computing
a basic transformation that perfectly matches pair
by pair these 2k features (edges, corners, triple junc-
tions, etc.). Since we know that a significant portion
of points in Sl will €-match, choosing at random a
k-tuple PI and computing all induced homographies
with all other k-tuples of S2 will lead to the more
efficient (by a square root factor) Monte-Carlo al-
gorithm. The originality of our method consists in
filtering the potential tuples P2 by considering met-
ric constraints imposed by the selection of PI . We
call it geometric filtering and it allows both in prac-
tice and theory to speed up the algorithm. For sake
of simplicity, let us assume that we look for a trans-
lation and a rotation matching features of I1 into 12.
Each detected feature point p lies in a ball B(p, p).
We set c = 4p in order to take into account the
fuzziness of our features. Let p* denote the "visual"
feature point that our feature extraction algorithm
approaches to p (p* E B(p, p)). Between two fea-
ture points, we have Id2(p;,pz) - dg(p1 ,pg)(5 2p.
Assuming some knowledge of the uniform scaling
factor related the two images, instead of compar-
ing (LI, Lg) to all pairs (R1, R2), we first choose a
point Rl E I2 and choose the second point inside
the ring whose center is R1 with minimum circle
B(R1, d2(L1, L2) - 2p) and width 4p. In the ideal
case where the feature extraction algorithm ensures
that p = p* for all features, we avoid testing all
the (3 pairs. Indeed, the maximum number of
"unit" distances defined by a collection of points is
in between fl(n1+&) and ~ (n b) , where c is a
constant. (Proving ~ (n g) is easy by decomposing a
circle query into four monotone arc queries.) Erdos
conjectured that the a (n 1 + 6) bound is tight.
This is related to the self similarity of a point set.
We notice that we avoid testing most of the pairs
(for example with nl E n2 = 2000 we skip more
than 99% of the pairs). Geometric filtering is rather
a general paradigm than some queries on rings. We
may therefore extend this approach by tailoring it
to the space of transformation anf feature types.

Table 1: Number of times, I, that the program enters
the while loop before finding a good tuple (1 5 k 5
5) which defines an (a , €)-match.

The other natural way to randomize, as already
noticed by Irani and Raghavan [6] (for alignment
and geometric hashing problems), is to avoid to test
the entire set S2 but rather to test only a subset
of it, of size r. One way to proceed, is to select
a t the very beginning a subset S{ of S1 of size r
and for each rigid perspective transformation tests
whether Xr points of S{ matches S2 (thru H) . If
there exists such a transformation that provides Xr
matching points, we test all of the nl points. Notice
that the subset S; may match locally several times
in S2. We will denote by s the maximum number of
times that S; can match in S2. That is s accounts for
the maximum number of distinct collineations that
produces a (A, €)-match of S: . In practice, s is very
small and relates to the self-similarity [6] of a point
set achievable by some families of transformations.

1: H = I d
2: while not found a (a , €)-matching homography

H do
3: Choose r points Si from S1
4: Draw a t random a k-tuple PI from Si
5: while not STOP do
6: Draw a t random a k-tuple P2: k = lPzl

points of S 2

7: (* We use geometric filtering *)
8: for all permutations Pi or P2 do
9: Compute the homography H that per-

fectly matches tuple PI to tuple Pi
10: if S; is a (A, €)-match in S2 then
1 1 : if S1 is a (a , €)-match in S 2 then
12: if the characteristics of matched

points correlate satisfactorily then
13: STOP
14: end if
15: end if
16: end if
17: end for
1s: end while
19: end while

Putting it all together, we get the probability of
failure after the ith iteration as follc~ws:

As a corollary, for any a > 0, we can appropri-
ately choose A, r and i such that the algorithm will
fail with probability a t most $ by only multiplying
the overall cost by OX,a,r,k (9).

l i e can implement easily the Haussdorf match-
ing as follows: we first build a Voronoi diagram
on points of S2 in O(n210gn2) time [18]. Then,
whenever we want to check for a (ole)-matching,
we make n l queries inside the Voronoi diagram
for a total cost of O(nl logn2). Therefore, under
the Haussdorf matching, it costs O(Tk(n2)r lognz +
snl logn2), where both s and 3'(n2) are less than
k! (y) . Implementing the bottleneck matching is
more costly. Efrat and Itai [8, 191 proposed an in-

terative O(n2 log nz + n! logn2)-time algorithm to
determine whether there is an (a, €)-matching or
not. Using their algorithm as the test procedure, we

(obtain an O 3 k (n2) (n2 + r)) log n2 + sn? log n2 -)
time randomized algorithm. Our implemented sys-
tem is adaptive by first looking for a rough trans-
lation (k = 1, a anchor point). This will allow us
to subdivide images and therefore increase the over-
lapping ratio of some parts of them. We then detect
more precise features and find progressively a better
collineation (with k = 4 a t the final stage). We also
perform subpixel analysis and perturbation methods
in order to improve the quality of the final picture.

Given a sequence of pictures taken from a hand-
held camera, we may create a poster by composing
matrices as depicted in the following figure:

The software has been written in C++ and cur-
rently weights about 10K lines of code.

ing geometry. In Proc. 12th Annu. ACM Sym-
pos. Comput. Geom., pages 301-310, 1996.

Acknowledgments

I would like to express my gratitude to Imad
Zoghlarni [20] (INRIA Robotvis - Erance) who in-
troduced me to mosaicing systems and to Pr. Mario
Tokoro (Sony CSL Inc. - Japan) for supporting my
project researchs.

References

[I] Olivier Faugeras. Three-Dimensional Computer
Vision: A Geometric Vaewpoint. MIT Press,
Cambridge, Massachusetts, 1993.

[2] C. D. Kuglin and D. C. Hines. The phase cor-
relation image alignment method. In IEEE Int.
Conf. on Cybernetacs and Society., pages 163-
165, 1975.

[3] James Davis and Clay Kunz. Image mosaics via
phase correlation. In manuscript of Stanford
University, 1998.

[4] Richard Szeliski and Heung-Yeung Shum. Cre-
ating full view panoramic mosaics and environ-
ment maps. SIGGRAPH 97, pages 251-258.
ACM SIGGRAPH, August 1997.

[5] M. A. Fischler and R. C. Bolles. Random sam-
ple consensus: A paradigm for model fitting
with applications to image analysis and auto-
mated cartography. Commun. A CM, 24(6):381-
395, 1981.

[6] Sandy Irani and Prabhakar Raghavan. Combi-
natorial and experimental results for random-
ized point matching algorithms. In Proc. 12th
Annu. ACM Sympos. Comput. Geom., pages
68-77, 1996.

[7] D. S. Hochbaum and D. Shmoys. A unified ap-
proach to approximation algorithms for bottle-
neck problems. J. ACM, 33:533-550, 1986.

[8] Alon Efrat and Alon Itai. Improvements on
bottleneck matching and related problems us-

[9] Harold W. Kuhn. On the-Origin of the Hungar-
ian Method, chapter 8. Elsevier Science Pub-
lishers B. V., Amsterdam, 1991.

[lo] J . E. Hopcroft and R. M. Karp. An n5I2 al-
gorithm for maximum matchings in bipartite
graphs. SIAM Journal on Computing, Springer
Verlag (Heidelberg, FRG and NewYork NY, USA
Verlag, 2, 1973.

[Ill Pravin M. Vaidya. Geometry helps in match-
ing (extended abstract). In Proceedings of the
Twentieth Annual ACM Symposium on Theory
of Computing, pages 422-425, Chicago, Illinois,
2-4 May 1988.

1121 P. Agarwal, A. Efrat, and M. Sharir. Vertical - -
decomposition of shaliow levels in 3-dimensional
arrangements and its applications. In Proceed-
ings of the 11th Annual Symposium on Com-
putational Geometry, pages 39-50, New York,
NY, USA, June 1995. ACM Press.

[13] Alon Efrat and Alon Itai. Improvements on
bottleneck matching and related problems us-
ing geometry. In Proceedings of the Twelfth
Annual Symposium On Computational Geom-
etry (ISG '96), pages 301-310, New York, May
1996. ACM Press.

[14] Heffernan and Schirra. Approximate decision
algorithms for point set congruence. CGTA:
Computational Geometry: Theory and Appli-
cations, 4, 1994.

[15] D. P. Huttenlocher, G. A. Klanderman, and
W. J. Ruclidge. Comparing images using the
Hausdorff distance. IEEE D-ans. Pattern Anal.
Mach. Intell., 15, 1993.

[16] D. Mount, N. Netanyahu, and J. Le Moigne.
Improved algorithms for robust point pattern
matching and applications to image registra-
tion. In 14th Annual ACM Symposium on Com-
putational Geometry, 1998.

[17] M. Hagedoorn and R. Veltkarnp. A general
method for partial point set matching. In Proc.
13th Annu. ACM Sympos. Comput. Geom., pages
406-408, 1997.

[18] J .D. Boissonnat and M. Yvinec. Algorithmic
geometry. Cambridge university press, 1998.

[19] A. Efrat, M. J. Katz, F. Nielsen, and Micha
Sharir. Dynamic data structures for fat objects
and their applications. In Proc. 5th Workshop
Algorithms Data Struct., pages 297-306, 1997.

[20] I. Zoghlami, 0. Faugeras, and R. Deriche. Us-
ing geometric corners to build a 2d mosaic from
a set of image. In Computer Vision and Pattern
Recognition'l997, 1997.

