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Abstract 

Image-based rendering is a recent trendy area 
which aims to provide users with convincing pho- 
torealistic computer graphics in real time. In this 
paper, we mainly concentrate on randomized algo- 
rithms for finding the fundamental perspective ma- 
trix that relates two given pixelized images by ap- 
plying Monte-Carlo randomized algorithms. Since 
the approach is rather generic, we derive an adap- 
tive system which registers a sequence of images by 
choosing a trade-off between the generated image- 
matching quality and the time required to get an 
approximation of an ideal perspective transforma- 
tion. 

1 Introduction and motivations 

Image-rendering systems are currently widely 
used since geometric models (surfaces, volumetric 
models, etc.) have been quite difficult to obtain 
from images. In this paper, we present a random- 
ized heuristic for computing the perspective matrix 
that relates two images to each other. We describe 
some combinatorial geometric randomized methods 
based on photogrammetry which improves the run- 
ning time of deterministic authoring systems. The 
method we propose below is fully automatic, does 
not require any human interactions and may be ap- 
plied to high picture definition as well as movie com- 
pression. 

2 What is mosaicing ? 

Mosaicing consists in taking a sequence of still 
image pictures and provide a collection of transfor- 
mations to join them into one blended picture. It 
is well-known [I] that in the case of images taken 
from a same three-dimensional viewpoint (with a 
pinhole-model camera), the transformation related 
these images are homographies (or collineations), de- 
fined up to a scalar factor, in the projective plane P2. 
Let H be such a transformation. Let pl and p2 be 
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the pixel points in image I1 and 1 2  that are the re- 
spective perspective projection of the same physical 
three-dimensional points p. Using the homogeneous 
coordinates for pl and p2, we get: 

with pl = (Fg) and pz = (2E). 
There are mainly two widely used techniques that 

have been employed in the past: the first one con- 
sists in geometric registration where the collineation 
is often restricted to similitudes on the plane (and 
not a full perspective collineation). The second one 
is based on Fourier principles and is called the phase 
cowelation method [2, 31. Recently, Szeliski and 
Shum presented an elegant and robust method for 
creating full mosaics and texturing them onto a poly- 
hedron [4]. 

3 General randomized techniques 

We apply random sampling (see also [5,  6)) to 
algorithms that match features. We would like to 
find a perspective transformation that maps one pic- 
ture I1 to another 1 2  in order to produce a single 
picture. If pl is the perspective projected point of 
the three-dimensional point p in image 11, and p is 
also visible (i.e., not obstructed) in picture image 
12. Then pa = Hpl, with pl = (zl yl I)=. Let 
us extract nl features (edges, corners, triple junc- 
tions, etc.) S1 from I1 and n2 features S 2  from 12.  

We aim at matching, by an appropriate collineation 
H,  as many as possible features. We initially at- 
tach to each detected feature a vector of character- 
istics describing the neighborhood where the feature 
has been extracted (e.g., intensity values, qualitative 
measures). We say that a point pl in Sl matched a 
point p2 in S2 for a collineation H if dz(p2, Hpl ) 5 E 

(for some given E 2 0) and if their corresponding fea- 
tures correlate satisfactorily. Let HSl be the set of 
points {Hplp E S1). We distinguish between three 
families of matchings: 

Pixel Cross-Corellation. We use as a scoring 



function for H the zero mean cross-correlation 
on subwindows centered at extracted points. 

The  Haussdorf matching. Each point p2 E S 2  is 
associated to its closest neighbor of HSl . Even- 
tually several points of S 2  may be attached to 
a same point of HSl.  Each associated pair of 
points defines an edge of the graph whose nodes 
are the point set HSl US2. The score of a Hauss- 
dorf matching is set to be the maximum edge 
length of any pair of matched points. (See also 
the directed partial Haussdorf distance.) 

The  bottleneck matching. The bottleneck mea- 
sure [7, 81 reflects in a better way the similar- 
ity of point sets. We consider the complete 
bipartite graph G = (HSl,S2,E), where E is 
the set of all weighted edges e = (pl , pz)  where 
w(e) = d2(pl ,m). Let 6, be the restricted bi- 
partite graph to all edges of weights less than c. 
The bottleneck matching is a maximum match- 
ing, often not perfect matching, of G,. 

Let m = [&,I be the number of edges of 6, 
and n = nl + n2 be the number of vertices. Per- 
fect/maximum matchings in general weighted graph, 
where one wants to minimize the sum of matched 
edges, require O(n3) time [9] using the so-called 
Hungarian method. On the other hand, on un- 
weighted bipartite graphs, a maximum matching can 
be found whenever it exists in time O ( m f i  [lo]. 
When considering geometric graphs, i.e., graphs ob- 
tained from a geometric scene, Vaidya [ll] gave 
an 0(n$)-time algorithm for matching two points 
sets so that the sum of the matched edges is min- 
imized. Considering the L, distance instead of 
the L2 distance, Vaidya obtained an O(n2 log3n)- 
time algorithm. Later on, those results where im- 
proved by Agarwal et al. [12] to O(n2+7) for any 
arbitrary small positive 7 > 0. Very recently, 
Efrat and Itai [13] using an implicit form of the 
geometric graph reported nearly o(n9)-time algo- 
rithm for computing a longuest matching that mini- 
mizes the maximum edge length among all matched 
edges. Further refinements of their algorithm has 
been achieved by using dynamic data-structures for 
fat objects [19]. (See also the work of Heffernan and 
Schirra [14] for approximation schemes.) Another 
classic approach to pattern matching, first developed 
by Huttenlocher et al. [15], is to perform a branch- 
and-bound strategy on some search space; For exam- 
ple, the coefficients of the matrix coding an affine 
transformation, define a 6-dimensional space. The 
algorithms start with a given box containing an op- 
timal solution, splits the current box into subboxes, 
kill some of them (those where the current best so- 
lution is better than any solution provided by them) 
and branch on the remaining active subboxes. The 

process stops whenever an "acceptable" solution is 
found (depends on the required precision). Very 
recently, those methods have been extended using 
alignment as in Mount et al. [16] and, Hagedoorn 
and Veltkamp [17]. Our algorithm extends the com- 
binatorial Monte-Carlo approach using properties of 
the Euclidean/projective space of point features. 

Let a be the percentage of points required 
to match up to an absolute error e (that is 
max{[a(S1(1, [a(S2(l)  points at least). Parameter CY 

is useful in practice since it reflects the perspective 
distribution of common feature points and possibly 
occluding parts (hidden features). Let k be the num- 
ber of features required in S1 and S2 for computing 
a basic transformation that perfectly matches pair 
by pair these 2k features (edges, corners, triple junc- 
tions, etc.). Since we know that a significant portion 
of points in Sl will €-match, choosing at random a 
k-tuple PI and computing all induced homographies 
with all other k-tuples of S2 will lead to the more 
efficient (by a square root factor) Monte-Carlo al- 
gorithm. The originality of our method consists in 
filtering the potential tuples P2 by considering met- 
ric constraints imposed by the selection of PI . We 
call it geometric filtering and it allows both in prac- 
tice and theory to speed up the algorithm. For sake 
of simplicity, let us assume that we look for a trans- 
lation and a rotation matching features of I1 into 12. 
Each detected feature point p lies in a ball B(p, p). 
We set c = 4p in order to take into account the 
fuzziness of our features. Let p* denote the "visual" 
feature point that our feature extraction algorithm 
approaches to p (p* E B(p, p)). Between two fea- 
ture points, we have Id2(p;,pz) - dg(p1 ,pg)( 5 2p. 
Assuming some knowledge of the uniform scaling 
factor related the two images, instead of compar- 
ing (LI,  Lg) to all pairs (R1, R2), we first choose a 
point Rl E I2 and choose the second point inside 
the ring whose center is R1 with minimum circle 
B(R1, d2(L1, L2) - 2p) and width 4p. In the ideal 
case where the feature extraction algorithm ensures 
that p = p* for all features, we avoid testing all 
the (3 pairs. Indeed, the maximum number of 
"unit" distances defined by a collection of points is 
in between fl(n1+&) and ~ ( n b ) ,  where c is a 
constant. (Proving ~ ( n g )  is easy by decomposing a 
circle query into four monotone arc queries.) Erdos 
conjectured that the a ( n 1 + 6 )  bound is tight. 
This is related to the self similarity of a point set. 
We notice that we avoid testing most of the pairs 
(for example with nl E n2 = 2000 we skip more 
than 99% of the pairs). Geometric filtering is rather 
a general paradigm than some queries on rings. We 
may therefore extend this approach by tailoring it 
to the space of transformation anf feature types. 



Table 1: Number of times, I, that the program enters 
the while loop before finding a good tuple (1 5 k 5 
5) which defines an ( a ,  €)-match. 

The other natural way to  randomize, as already 
noticed by Irani and Raghavan [6] (for alignment 
and geometric hashing problems), is to avoid to test 
the entire set S2 but rather to test only a subset 
of it, of size r. One way to  proceed, is to select 
a t  the very beginning a subset S{ of S1 of size r 
and for each rigid perspective transformation tests 
whether Xr points of S{ matches S2 (thru H ) .  If 
there exists such a transformation that provides Xr 
matching points, we test all of the nl points. Notice 
that the subset S; may match locally several times 
in S2. We will denote by s the maximum number of 
times that S; can match in S2. That is s accounts for 
the maximum number of distinct collineations that 
produces a (A, €)-match of S: . In practice, s is very 
small and relates to the self-similarity [6] of a point 
set achievable by some families of transformations. 

1: H = I d  
2: while not found a ( a ,  €)-matching homography 

H do 
3: Choose r points Si from S1 
4: Draw a t  random a k-tuple PI from Si 
5: while not STOP do 
6: Draw a t  random a k-tuple P2: k = lPzl 

points of S 2  

7: (* We use geometric filtering *) 
8: for all permutations Pi or P2 do 
9: Compute the homography H that per- 

fectly matches tuple PI to tuple Pi 
10: if S; is a (A, €)-match in S2 then 
1 1 :  if S1 is a ( a ,  €)-match in S 2  then 
12: if the characteristics of matched 

points correlate satisfactorily then 
13: STOP 
14: end if 
15: end if 
16: end if 
17: end for 
1s: end while 
19: end while 

Putting it all together, we get the probability of 
failure after the ith iteration as follc~ws: 

As a corollary, for any a > 0, we can appropri- 
ately choose A, r and i such that the algorithm will 
fail with probability a t  most $ by only multiplying 
the overall cost by OX,a,r,k (9). 

l i e  can implement easily the Haussdorf match- 
ing as follows: we first build a Voronoi diagram 
on points of S2 in O(n210gn2) time [18]. Then, 
whenever we want to check for a (ole)-matching, 
we make n l  queries inside the Voronoi diagram 
for a total cost of O(nl logn2). Therefore, under 
the Haussdorf matching, it costs O(Tk(n2)r lognz + 
snl  logn2), where both s and 3'(n2) are less than 
k! ( y )  . Implementing the bottleneck matching is 
more costly. Efrat and Itai [8, 191 proposed an in- 

terative O(n2 log nz + n! logn2)-time algorithm to 
determine whether there is an (a, €)-matching or 
not. Using their algorithm as the test procedure, we 

( obtain an O 3 k  (n2) (n2 + r ))  log n2 + sn? log n2 - ) 
time randomized algorithm. Our implemented sys- 
tem is adaptive by first looking for a rough trans- 
lation (k = 1, a anchor point). This will allow us 
to subdivide images and therefore increase the over- 
lapping ratio of some parts of them. We then detect 
more precise features and find progressively a better 
collineation (with k = 4 a t  the final stage). We also 
perform subpixel analysis and perturbation methods 
in order to improve the quality of the final picture. 

Given a sequence of pictures taken from a hand- 
held camera, we may create a poster by composing 
matrices as depicted in the following figure: 

The software has been written in C++ and cur- 
rently weights about 10K lines of code. 
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