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Abstract: T h i s  paper concerns acquisition of dense 
depth m a p s  in t h e  context  of image  segmentat ion,  which 
is fundamenta l  in various  v is ion applications. Focusing 
o n  stereoscopic v i s ion  as  t h e  methodology, o u r  goal here 
i s  t o  develop a scheme  uihich i s  computat ional ly  s imple  
but still allouis a dense disparity m a p .  For the  es t ima-  
t i o n  of stereo disparity,  for  this  reason, uie employ a n  
approach based o n  local Fourier phase obtained by  com- 
plex bandpass filters. W e  consider the  characteristics of 
th is  search-free and thus  fast approach a s  suitable t o  -. 

compute  stereo dispari ty  a s  a basic cue for image seg- 
m.entation. W i t h i n  the  frameuiork of t h e  phase-based al- 
gori thm,  in this  paper? t w o  issues  are discmsed.  O n e  i s  
the  w e  of the  deriz~ati.ue-based filters. and the  other  i s  
t h e  certainty-weighted disparity propagation. 
Keywords: disparity,  depth segmentat ion,  phase-based 
al.qorithm, complex filters, disparity propagation 

1 Introduction 

While different image features such as motion, color, 
or edge information provide cues, stereoscopic disparity 
also provides a strong cue for image segmentation as it 
carries depth information. -4 highly desirable property 
for depth segmentation is the availal~ility of disparity 
estimations tightly connected to the spatial locations. 
In this article, we propose a technique to realize dense 
disparity maps while keeping computational simplicity 
employing the phasebased approach. The basic con- 
cept of the phase-based approach is to convolve the left 
and right stereo images with a complex filter, and then 
estimate the local disparity by computing the complex 
phase difference of the filter output. Since the stereopsis 

'This report describes research done while t,he author 
was with t,he Comput,att.iond Vision and Act,ive Per- 
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F i g ~ r e  1: The framework of the disparity estimation 
algorit,hm including the hierarchical st,ruct,ure. The in- 
formation flow in layer k is shown. The procedure in the 
dashed box corresponds to equation (2) and ( 5 ) .  Down 
at the original scale (k = I), the disparity and the cer- 
tainty maps are taken as the outputs of the algorit,hm. 

ception Laborat.ory (CCTAP) at the Royal Institute of 
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algorithm using output phase of Gabor filters mas intro- 
d~lcecl as a disparity estimator [9. 11. 41, several works 
based on the technicl~~e have reported on its efficiency 
both hy extensive analysis and applications [5. 10, 2. 81. 
\Vhile the aclvantages of the phase-based method in- 
c111de cornp~~tational simplicity. stal~ility against vary- 
ing lighting condition a i d  especially direct localization 
of the disparity estimation. remaining issues concern 
the complex filters ~vhich need be carefully designed, 
and for image segmentaion the whole scheme must be 
constructed in such a way that disparity estimates are 
derived even in parts of input image where the intensity 
variance is limited. 

In the following. we first introduce our framework 
of phase-based algorithm in Section 2. hfotivating the 
advantages of the derivative-based filters in Section 3, 
we derive a dense disparity map by may of certainty- 
\veigl~ted disparity propagation in Section 4. The per- 
formance of the proposed scheme is exemplified in Sec- 
tion 5. Finally we summarize the work in Section 6. 

2 Disparity from phase 

Here we hriefly introd~~ce the principle of phase 
l~ased clisparity estimation and describe the structure 
of our framework. In the follon-ing. l;(.r. y) and l:.(.r, y) 
are the convohltions at a coordinate (.r. y). obtained by 
a complex filter applied to the left and right images re- 
spectively. These complex functions are approximately 
related to each other by a phase shift, which aises from 
the spatial shift (i.e. disparity): 

( y )  11 exp [ j ~ ( . r ,  y )D(r .  y)] . V,(s, y). (1) 

D(.r. y) denotes disparity at (.T. y) in the image and 
w.(.r. y) represents some measure of local frequency of 
the image intensity function in the neighborhood of 
(.r. y). As ~ ( . r ,  y) we employ the so-called instantaneous 
frequency which is introd~~cetl in [5]. It is defined locally 
by the derivative of the phase filnction ancl therefore di- 
rectly related to the local stnlcture of the image inten- 
sity function. The relation in equation (1) then leads to 
a disparity estimate thro~lgh computation of the com- 
plex phase difference: 

ters have been proposed accorclingly [lo]. .Anlong dif- 
ferent filter types. Gabor filters are a common choice as 
they minimize the product of spatial width ant1 bantl- 
~viclth [3]. They are defined by: 

where a and GO inclicate the spatial half-I\-idth and the 
central frequency of the filter. In the l i terat~~re [2. 101 
Gabor filters with bandwidth close to 1 octave is a usual 
choice. \lie call them NB-Gabor filters. In our previous 
work [GI though, based on uncertainty analysis. we have 
pointed out the effectiveness of filters with larger band- 
width (awo % 1.3; about 3 octave) in terms of both 
disparity localization and estimation accuracy. \Ye call 
them WB-Gabor filters1. 

In order to apply the framework in a workiilg system, 
the filters are required to be con~p~~tationally simple. 
\Ye here employ discrete approximations to the first and 
second derivatives which are first introtll~ced 11y \Vest- 
elius [lo]: t o  (-1, 0 , l )  and (1,0. -2.0. I ) ~ .  Onr goal here . - 
is to motivate the availability of the derivativebased 
filters as snl~stitutes for TYB-Gabor filters. The advan- 
tagesof the clerivativehased filters lie in their small 
spatial support and the normalization of the features. 
Smaller spatial support not only reduces the compl~ta- 
tional cost but at the same time allo~vs better disparity 
localization. Furthermore, it is also convenient to have 
no DC-component, which is more or less inevitably in- 
volved in case of Gabor filters. 

In the frequency domain, as known in Fourier the- 
ory. to take the first and the second derivative of the 
image intensity function i(x) is ecluivalent to multiply 
the Fourier transform I(G) by JU: and ( J U : ) ~ .  Since they 
are not bandpass operators, as far as the continuous 
theory is concerned, preliminary smoothing of i ( r )  is 
necessary so that the derivative operators hecome hand 
limited. In the case of discrete operators. holvever, the 
smoothing is not a prerequisite a5 the discrete approach 
includes some smoothing implicitly. The Fourier trans- 
form of the derivative-lmsed filters has the form: 

arg li(.r .  y) - arg l;.(.r, y) 
D ( s , y )  % (2) It contains some contril~utions in the negative frec~~eiicy 

4 - r *  Y )  domain though they can be sllppressed by arljl~sting t 

TIle algoritllln \vl1ich yields the disparity and the to some extent3. It also covers a rather wide ~~~~~~~idth 

map (see Section 4) in our framework is around the central frecluency U:O = ~ / 2  as a natural fea- 

collstructed in multi-resollltion llier;u.c~ly. Figure 1 ture derived from the small spatid support. i.e. 3 pixels. 

schematically depicts the frame\\-ork by outlilling the This number can be crudely associated with the spatial 

procedure at one scale. 'LVB and SB are derived from wide-bantlpass <and 
narrow-bandpass. 

3 Derivative-based filters ?Integer values of the weighting factor t nlake it possible 
to implement the filter on a pipeline processor. 

Complex filters as disparity estimators are recluired 3 ~ h e  weighting factor t : 1.732 is reported to 1ninimi7e 
to satisfy several existing constraints and different fil- the negative frecluenry in a drtailcd ~nvestlgation [lo]. 



half-width a (see equation (3)) as 2 3a 2 5 pixels, 
which leads to ad" N 1.3. This indicates. in the con- 
text of the Gabor representation. that the bandwidth 
of the derivative-based filter is similar to that of the 
I\-B-Gabor filter. implying possible similarity in per- 
formance. 

4 Disparity propagation 

As is the case for any disparity estimators. the phase- 
based approach may also work improperly in parts 
of images n-here too little texture exists or stereo- 
correspondence is difficult. Hence. it is inelispensable for 
an estimated disparity map to entail a certainty mea- 
sure for evahlation of its reliability. There are several 
definitions of such certainty measures. simple or elabo- 
rate [lo]. The magnitude of the filter ol~tputs llil and 
IT:.I are rather conmionly used properties. It is based on 
the fact that the odd and even filters practically func- 
tion as vertically oriented edge and line detectors. and 
above d l ,  those properties are available directly from 
the filtering process. Our certainty measure is defined 
by conihi~iing that information: 

High certainty is reflected in the first factor of the defini- 
tion which is large for strong filter outputs both in the 
left anel the light images. The second factor captures 
the similarity hetween them. anel lies in the range [0,1]. 
C(s. y) will be kept Ion- around the area where the dis- 
parity estimation is unstable due to bad-correspondence 
or lack of image intensity variance, thus helping to avoid 
singularities. 

Based on C(x. y) we compute a certainty-weighted - 
disparity D,(.r, y) with a Gaussian envelope G(x, y; a,) 
(a,.: the standard deviat.ion): 

The certainty values are used as a weighting factor for 
the disparity estimates in a Gaussian region G(x' - 
.r. y' - y: a,,.) around each coordinate (s. y). Hence, dis- 
parities with higher certainty are propagated to the 
vicinity 1%-l-hile those with lower certainty are suppressed. 
In a coarse-to-fine strategy. repeated use of this tech- 
niclue is especially useful. since erroneous estimates are 
attentlated at the early stage instead of causing recur- 
sive errors. 

5 Experiments 

The introduced scheme has been irnpleniented on a 
Ultra-I 170/E. .4n example is shown in Figure 2 with 
three persons in a laboratory scene. The resulting dis- 
parity and certainty maps are obtained in a Clayereel 
coarse-to-fine framework r~sing the derivativelxised fil- 
ters. It is seen that relative depth is recovered appro- 
priately to serve as a cue for image segmentation. Fig- 
ure 3 shows results of the same experiments but using 
NB-Gabor filters instead. It is observed that the lo- 
calization is not as precise as in the case of using the 
derivativebasecl filters4. Especially in 110th ends of the 
image the derivativebased filters allows better localiza- 
tion because of the small spatial support. 

( 1 1 )  A . P I I I T I ] I ~ ( ,  . ~ t ( ' reo  l,ribnge pn.r1 ( t o  / I ( '  ~:ros.c-J~~sc,tl) 
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Figure 2: Exanlple of disparity and certainty maps I. 
The results are by the derivative-l>a.secl filtws with 
certainty-weighted disparity propagation. In (b)  the 
higher the gray scale is. the larger the estiniaterl tlis- 
parity is (further away in the scene). 111 ( c )  higher gray 
scale represents higher certainty measure. 

Examples of computational time are sliolvn in Ta- 
ble 1. Listed are the time required for the computa- 
tion by the derivative-based filters as well as by Ga- 
bor filters with and without the certainty-weighted clis- 
parity propagation. i.e. a,. = 0. 2.0. The simplicity of 
the derivative-basecl filters is reflected in the cornpi~ta- 
tional cost. Tliot~gh extra con~pi~tation is tieederl when 

'Our rarlier work [8] includrs a coxnparison 1)rtncr.n 
the derivative-haset1 filt,ers mtl Gahor filters. Howrvrr. it 
is nithoiit disparity propagation. 



( ( 1 )  D i I i t  l/ ( h )  Cf l f ~ 1 7 l f y  
Figure 4: Example of disparity and certai~lty 111aps 111. 

Figlire 3: Esiunple of disparity anrl certainty maps 11. In (a )  a paper is hanging in front of a slanted hack- 
The res~llt s are 11). NB-Gd)or filters (a = 3.7. izo = 1.0) ground. The res~ilts are 1,y the derivative-lmsecl filters 
with certai1lty-\veig11tecl disparity propagation. with certairlty-~veightecl disparity propagation. 

propag;ttiol1 1)rocess is iIlcllldpd, it does not increase a.5 an integral operator conlpensates the instability aris- 

tile cost S1ll,Staltially ~ O I l s i ~ ~ s i I l g  tile effect it hrillgs ill ing from the derivative operators. As the reslllt, the pro- 

the reslilt. posed techniqiies improve the scheme in ternls of (iii) 
the comp~itational cost and (iv) the accuracy of the es- 
tinlation localization. The efficiency has 1,een confirmed 

Tal~le 1: Compiitational Time on Vltra-I liO/E (CPU thmllgll esPerilllents. 
Time [sec]) ~lsing 4-layered hierarchical schelne on 
23Gx 23G images. 
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In Figure 4 another exiunple ~vith a repetitive pat- 
tern is sholr-n. The inpiit image is with slanted Imck- 
groiincl and a paper rectangle in front. The clispar- 
ity and certainty maps are ol>tained a~alogol~sly i~sing 
the derivative-based filters. It is seen in the clisparity 
map that the schenle clisclimi~lates the paper from the 
I~ackgrouncl. Sllcll a pair of dense disparity rnap and a 
certainty meas~~re  provides significant information for 
depth image segnlentation. It sho111d also he noted that 
the presented algorithm is eclually suited to detect hor- 
izontal image velocity, by replacing the input stereo im- 
ages with a pair of t i~ne  consecntive images. Together 
n-it11 the disparity map. the conlpi~ted nlotion field has 
been implemented to applications s~lch as an attentional 
mechalism. For practical examples. see [7. 11. 

6 Summary 

111 this article. we have considereel the proldem 
of disparity estinlatio~l lising a phase-l~ased a~proach  
to depth segmentation. \\b have ( i )  motivated the 
derivative-1,ased filters in contrast to Gal,or filters. 
and (ii) alq)liecl then1 in collj~lnction wit11 a certainty- 
~veighted disparity propagation n-it11 Gaiis~ian envelope. 
111 oils friu~~e\vork of phase-l,asetl algorithnl, t l lro~~glloi~t 
the coarse-to-fine scllenle. the iise of Gaiissian envelope 
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