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Abstract 

Camera images can be used to measure the ge- 
ometry of man-made objects. An iterative weighted 
least-squares estimator with knowledge of imaging 
and reflection models retrieves the geometrical pa- 
rameters of objects in a 3-D scene from 2-D image 
projections. We investigate the use of multispec- 
tral imagery which allows us to separate diffuse and 
specular reflection before estimating geometry. We 
built a multispectral camera measurement system 
that has been used to capture real images of a cylin- 
drical body. These have been processed to analyse 
the propagation of radiometric noise from reflection 
via imaging into reflection component separation. 
The purpose of this research is the development of 
a radiometric noise model for use in our geometry 
estimator. 

1 Introduction 

The reflection of light on a surface is based on 
two major physical phenomena. Diffuse (body) re- 
flection originates from emission of light that has 
not been absorbed after penetrating the material. 
Specular (interface) reflection mirrors incident light 
in opposite direction with a scatter that dilates with 
surface roughness. The latter component accounts 
for the occurrence of shiny spots upon curved sur- 
faces. We consider these so called highlights to be 
useful clues for shape from shading rather than in- 
convenient image disturbances. 

Under the assumption that both reflection com- 
ponents can be separated before estimating geom- 
etry, we have shown both analytically [2] and by 
simulation [I] that the smooth profile of the diffuse 
component provides the estimator with good conver- 
gence properties, while the sharp profile of the spec- 
ular component can be utilized to  reduce the noise 
sensitivity of some of the geometrical parameters 
to be estimated. The noise model applied in these 
experiments consisted of additive noise on both re- 
flection components with no correlation in between. 
However, a refinement of this simplistic model is re- 
quired to provide accurate estimates of geometrical 
parameters from real images. 

A multispectral camera measurement system has 
been built to  capture real images of a cylindrical 
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body. Its curved surface ascertains the occurrence 
of a highlight beside a diffuse component that will 
smoothly vary along the curve. Positioning the light 
source and camera at  a large distance provides a 
(near)-constant reflection geometry in the direction 
along the axis of the cylinder. Sampling the mul- 
tispectral image or its separated reflection compo- 
nents in the direction of the axis enables the esti- 
mation of statistical parameters as a function of the 
varying reflection geometry in the perpendicular di- 
rection. Analvsis of these statistics must lead to a 
radiometric noise model for the reflection comr>o- 
nents of the separated image. For this purpose, we 
first need to perform the reflection component sep- 
aration utilizing the multispectrality of our images. 

2 Reflection component separation 

The reflection from the surface of an object can 
be considered as a linear combination of diffuse and 
specular reflection. Inherent differences in the spec- 
tral density of these reflection components offer pos- 
sibilities to separate them in a multispectral image 
without knowledge of the geometry of the scene. 
Adopting the dichromatic reflection model [3] for in- 
homogeneous dielectrics (e.g. plastics and paint), 
the spectral density F(G, A) of light reflected from a 
surface can be formulated as 

where ad(6) and a,@) are the (d)iffuse and 
(s)pecular weights depending on geometry G of the 
scene. Interaction between light and matter makes 
the spectral density of the diffuse component a prod- 
uct of the spectral density L(A) of the light source 
and the spectral reflectance R(A) of the surface ma- 
terial. The interface reflection makes the spectral 
density of the specular component equal the spectral 
density L(A) of the light source assuming wavelength 
independence of the F'resnel reflection coefficient. 

When the light reflected from a surface falls 
through a colour filter with spectral transmittance 
Ti(A) onto a CCD-element of a camera with spectral 
sensitivity S(A), the spectral irradiance is integrated 
into a measurable voltage &(G) proportional to 

e,(G) SA F(4 ,  X)Ti(X)S(X)dX = 
a,(G)  J, L(X)R(X)Ti (X)S(X)dX + as(9) J, L(X)Ti(X)S(X)dX 

= ad(G)di f aa(G)si 
(2) 

The difference in the sensitivity of the sensor for dif- 
fuse and specular reflection is tied up in the ratio of 



the constants di and si,  so that the precise knowl- 
edge of all spectral densities is not required. 

Viewing the same geometry G with filters of dif- 
ferent spectral transmittance Ti(X) g' ives us a mea- 
surement vector ;(G) in a multi-dimensional fea- 
ture space. Vectorization of the corresponding con- 
stants di and si from Eq. (2) provides the dif- 
fuse and specular direction vectors z a n d  s' which 
span a 2-D subspace. The projection of the (noisy) 
measurement vectors onto this plane will determine 
the separation in reflection components. Vector- 
ization of the diffuse and specular weights crd(G) 
and cr,(G) into parameter vector G(G) arises the fol- 
lowing (0ver)determined linear inverse problem in 
matrix-vector form: 

g(G) K an(G)d+ a,(G)b = ( d s' ) G(G) = A6(G) 

+ &(GI K ( A ~ A ) - ~  A ~ ~ ( G )  

(3) 
A straightforward least-squares estimation [5] pro- 
vides the estimated weights $6) to separate each 
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multispectral measurement O(G) into reflection com- 
ponents. 

2.1 Estimation of diffuse and specular 
direction 

Accurate estimation of the diffuse and s~ecular  
direction vectors d and s' is essential for a suc- 
cessful reflection component separation. The set 
of measurement vectors from a surface of uniform 
reflectance that is partially covered by highlight(s) 
forms a 2-D subspace in feature space, if the dichro- 
matic reflection model applies. This plane can be 
estimated by principal component analysis of the 
covariance matrix of the set of (noisy) measurement 
vectors. The plane is spanned by the eigenvectors 
that correspond to  the biggest pair of eigenvalues. 
Planes originating from surfaces of different spec- 
tral reflectance but radiated by the same light source 
must share a 1-D subspace that is spanned by the 
specular direction vector s': An estimate of $is ob- 
tained by intersecting two of those planes. 

If the spectral reflectance of a surface is not white, 
one can distinguish two joining clusters of measure- 
ment vectors in feature space [4] (see examples in 
Figures 3 and 4). The first cluster points from the 
origin and contains vectors with negligible specu- 
1ar reflection. The second cluster makes an angle 
towards the specular direction vector and contains 
vectors with both a diffuse and a specular reflection 
component. Principal component analysis can be 
applied to the covariance matrix of a set of (noisy) 
measurement vectors that definitely belong to the 
first cluster. Selection of this subset has been per- 
formed manually so far. The estimate of the diffuse 
direction vector z i s  given by the eigenvector that 
corresponds to the biggest eigenvalue. 

Figure 1: Our multispectral camera measurement 
system. 

3 A multispectral camera measure- 
ment system 

Figure 1 shows our multispectral camera mea- 
surement system. It has been founded on a T-shaped 
horizontal beam construction. Camera and light 
source are mounted on and moveable along the 
shorter beam. An upright standing cylinder with 
a rotateable and interchangeable jacket surface can 
be moved along the longer beam. An ordinary 100W 
incandescent light bulb serves as a distant isotropic 
point light source. Our camera is a Teli CS8310C 
monochrome CCD-camera with an Olympus lens of 
50mm focal distance. Its images are digitized by 
a Datacell S2200 framegrabber card plugged into a 
Sun Sparc-station. 

The spectral sensitivity of the camera can be var- 
ied by shifting stacks of Schott colour glass filters [6] 
in front of the lens of the camera. The three stacks 
used for our measurements respectively contained a 
3mm RG665 filter (Red), a lmm BG7 filter (Blue) 
and a combined lmm BG7 on 3mm GG495 filter 
(Green). Inserting a 3mm KG3 infrared blocking 
filter in each stack is necessary to have the response 
of the camera dominated by the visible spectrum in 
which diffuse and specular reflection differ most. 

The post-processing starts with aligning the mul- 
tispectral bands of the image to  correct translations 
introduced by the different filter stacks. A marker 
has been added to the scene for this purpose. Next 
the multispectral image is rotated to  align the cylin- 
der axis precisely with the vertical axis of the image. 
The rotation angle is derived from the prevailing gra- 
dient of the image. 

4 Experimental results 

Multispectral images were captured from the sur- 
face of the cylinder that was respectively covered 
with blue and red plastic sheet of a leather-look 
roughness. Figure 2 shows the image of the red 
cylinder taken with the Red filter stack in charge. 
Figures 3 and 4 show elevation plots of the 2-D his- 
tograms of the Red-Blue images of both cylinders. 



Figure 2: Image of red plastic Figure 3: Elevation plot (log) of Figure 4: Elevation plot (log) of 
cylinder (and marker) captured 2-D histogram of Red-Blue image 2-D histogram of Red-Blue image 
with the Red filter. of red cylinder. of blue cylinder. 

The bright spots bottom left originate from back- 
ground pixels. Those histograms have been used 
for the proper selection of the subsets of 3-D mea- 
suremect vectors from which the diffuse direction 
vector d of both cylinders and the joint specular di- 
rection vector ,?were derived (see § 2.1). 

The reflection component separation has been 
performed on the multispectral images of both cylin- 
ders, but we will present the results of the red cylin- 
der only. Figures 5 to 10 show the plots for three sta- 
tistical parameters: mean, standard deviation and 
correlation coefficient in vertical direction for all 
bands of the multispectral image and for the two sep- 
arated reflection components1. The successful sepa- 
ration into reflection components appears from the 
smooth profiles of their mean values in Figure 8. A 
systematic separation error would appear as a lump 
or dent in the diffuse profile a t  the position of the 
highlight. The absence of such an error is highly de- 
pendent on the accurate estimation of Zand ~7. Ac- 
cording as the angle between these vectors is smaller, 
their estimation will be more difficult in itself and an 
error will propagate stronger into the separated re- 
flection components. This makes the multispectral 
separation method less suitable for surfaces with a 
near-white reflectance. 

4.1 Radiometric noise analysis 

The influence of the various radiometric noise 
sources on the multispectral camera measurements 
appears from the standard deviation in Figure 6. 
The signal-independent part originates from camera- 
related sources like dark current noise, amplifier 
noise and quantization errors [7]. The narrow peak 
a t  the left is an artifact caused by the abrupt change 
from background to object. 

The signal-dependent part includes spatial vari- 
ation in sensitivity of the camera (fixed pattern 
noise), intensity of the light source, transmittance of 
the colour filters and spectral reflectance of the sur- 
face, which all impose a linear relationship between 

signal level and standard deviation. Variations from 
the first two sources are correlated in the different 
multispectral bands and increase the correlation co- 
efficients of Figure 7. Another source to take into 
account is the shot noise that results from the quan- 
tum nature of light and imposes a linear relationship 
between signal level and variance. 

The big peaks in the standard deviation at  a high- 
light are caused by surface roughness, for specular 
reflection is much more sensitive to variation in local 
geometry than diffuse reflection. A linear relation- 
ship between signal level and standard deviation is 
imposed by this source. Its variation is correlated 
in the different multispectral bands, which leads to 
the large correlation coefficients at  highlights (see 
Figure 7). 

4.2 Propagation into the separated re- 
flection components 

The propagation of the radiometric noise into the 
separated reflection components appears from the 
standard deviation in Figure 9. Of importance is 
the increasing standard deviation of the diffuse com- 
ponent near highlights. Because the specular reflec- 
tion raises the signal level in all multispectral bands 
(see Figure 5), the standard deviations of the signal- 
dependent noise sources increase. This leads to an 
increasing standard deviation for both the specular 
and the ;iffuse component, because shot noise and 
spatial variation of the filter transmittance are un- 
correlated in the different multispectral bands. Also 
chromatic aberration of the camera lens can cause 
such colour shifts at  image positions where irradi- 
ance changes fast. Averaging over multiple realiza- 
tions to tackle shot noise and a calibration procedure 
for lens and filters may reduce the observed effect. 

The correlation coefficient from Figure 10 turns 
out to be small at  the highlight, which implies that 
the covariance between the diffuse and specular 
component stays relatively small for any reflection 
geometry. Around highlights the reflection compo- 
nent se~aration strondv decorrelates the radiomet- 

9 h e  magnitude of the mean and standard deviation of ric noise from the muitispectral bands of the image, 
the separated reflection components is expressed in terms of because the noise source of most significance is sur- 
normalized diffuse and specular direction vectors d and s: face roughness in those areas, varying the measure- 



Figure 5: Mean of multispectral Figure 6: Standard deviation of Figure 7: Correlation coefficient 
image bands. multispectral image bands. between multispectral bands. 
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Figure 8: Mean of separated reflec- Figure 9: Standard deviation of Figure 10: Correlation coefficient 
tion components. separated reflection components. between reflection components. 

ment vector along the specular direction of feature 
space. 

tion, if systematic separation errors can be avoided. 
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