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Abstract 

In this paper, we want to  find a corner enhance- 
ment curve deformation approach. We consider 
General Geometric Heat Flow(GGHF) as a general 
deformation approach, and the evolution of curva- 
ture in the approach is derived. The criteria of cur- 
vature scale space are proposed and subjected to 
the GGHF. The conditions under which the corner 
can be enhanced are also studied. From all these 
constraints, a new deformation scheme which can 
enhance strong corner and suppress noise and small 
structure while satisfies the scale space criteria is 
presented. 

1 Introduction 

Planar curve analysis is very important for object 
recognition and in the analvsis. features extraction <, - ,  

is a fundamental task. Among many features, such 
as arc, segment, corner singles out as the most im- 
~ o r t a n t  one. Usuallv. kernels should be used to  ex- " ,  

tract such features, thus how to select appropriate 
scales for the kernels becomes a difficult but impor- 
tant problem. Inspired by the works of Witkin[l8] 
and Koenderink[6] introducing scale space image 
processing, multiscale curve analysis(a1so known as 
curve-evolution) became very attractive for solving 
the key point[9][10][11][15][16][17]. A multiscale pla- 
nar curve remesentation is very useful since it gives - 
us a robust and  analytical description of the infor- 
mation of the curve a t  different scales. 

There are two widely used approaches to gener- 
ate Curve Scale Space, namely Gaussian Smooth- 
ing[ll] and Curvature Defonation[9][10]. Both of 
the two methods smooth curves so to suDDress noise . . 
and weak features. Thus corners are also smoothed 
as the scale increases. In fact, as it was pointed 
out, the curve evolved according to curvature defor- 
mation would convergence to  a "circle point"[3][4]. 
This is obviously a serious drawback when it comes 
to  ~ract ical  recoenition since the salient features are " 
destroyed in the course of evolution. 

The problem we want to address here is to 
find other approach to construct the curve scale 

'Address: PO.Box 2728, Beijing 100080, P.R.China. E 
mail: conggeQprlsunl.ia.ac.cn 

space, in which the strong corners(loca1 curvature 
extrema with large curvature magnitudes)will be en- 
hanced(the curvatures become bigger and bigger). 
However, any multiscale representation must sat- 
isfy some constraints or criteria so to guarantee that 
it is meaningful to  the our purpose[l9][14][2]. For 
example, when we performing corner enhancement, 
new corners should not be generated as we enhance 
the existed ones. This constraint should be satisfied 
by the scale space to be constructed in this paper. 
We generalize the criteria proposed for image scale 
space[19][14][2] to curve scale space and derive our 
approach under the condition that the criteria are 
satisfied. 

2 Curvature evolution in GGHF 

Consider a curve : 

where S1 donates the unit circle, and 

Usually, the curve is parametrized by a arbitrary 
parameter p while there exists a unique Euclidean 
arc-length parameter s E [0, L], L=l  is the length of 
the curve. v = ( (~0) ;  + (yo);)'f2 is the Euclidean 
metric, a characteristic function of the parameter p. 

The curve evolves in time, where "time" repre- 
sents scale. Let C(p, t )  donates the family of the de- 
formed curves. In general, the curve deforms accord- 
ing to  the General Geometric Heat Flow(GGHF): 

We indicate with I? and ? the inward normal and 
the tangent unit vector of the curve. a ,p  are arbi- 
trary functions. Co is the original curve. C(p, t )  is 
called the Curve Scale Space. 

The Curvature Deformation is defined as: 



There are following formulas about the evolution 
of curvature k of the curve and its any order deriva- 
tive in GGHF (See Appendix for proof): 

where we indicates with subscript the derivatives 
and the derivative with respect to  t is obtained while 
keep p fixed. 

3 Causality criteria in curvature 
scale space 

What we are concerned with mostly for the curve 
is its shape, thus t o  construct a sample and efficient 
scale space, we should find a parameter t o  represent 
the shape a t  each point on the curve. Following[5], 
curvature singles out as a natural choice. So we 
transfer from the Curve Scale Space C(p, t : S1 + 

R2 to  the Curvature Scale Space k(p,t)  : S' -+ R1. 
No spurious details should be generated passing 

from finer t o  coarser scale; In planar curve evolution, 
curvature zero-crossings(which separate the curve 
into convex and concave parts) and extrema(which 
represent the locations of the corners) are two most 
important kinds of features for characterizing the 
shape of the curve and are considered as "details" 
in curvature scale space. So new zero-crossing or ex- 
treme should not be generated as the scale increases. 
It was proved[l0][16] that if there is: 

no new zero-crossing(ZC) of the curvature will be 
generated; Similarly if there is: 

- kppp > 0, a t  the place where kp = kpp = 0 (7) 
(kP)t 

no new extreme of the curvature will be generated. 
It is easy to  prove that the two inequalities above 
are satisfied if and only if the following inequalities 
are satisfied respectively: 

k,, - > 0, a t  the place where k = k, = 0 (8) kt 
k*,, - > 0, a t  the place where k, = k,, = 0 
(ks t 

Now it is easy t o  prove following theorems: 
Theorem 1 In the curvature scale space k(s , t ) ,  

if there is: 

k, 8 - > 0, a t  the place where k = k, = 0 (9) P* 8 

then the evolution will not generate new curvature 
ZC. 

Theorem 2 In the curvature scale space k(s, t ) ,  
if there is 

k,,, > 0, at the place where k, = k,, = 0 
Osk2 + Osss . . . - - .  

(10) 
the evolution will not generate new curvature ex- 
treme. 

Since we do not know a priori where the point 
that k = k, = O or k, = k,, = 0 will be, we ask 
the constraints to  be satisfied a t  every point on the 
curve[6][10]. As we can see, a does not influence 
the Causality criteria, we can set a = 0 or whatever 
appropriate for our special purpose. 

If we select p to  be a function of the curvature: 

From (9) and ( lo) ,  it is easy to  prove that no new 
ZC nor extreme will be generated if and only if : 

P ' P )  > 0 (12) 

where P1(k) is the derivative of /3 with respect t o  k. 

4 Corner enhancement 

Usually corner is defined as the local extreme of 
curvature, i.e., k, = 0, however for "real" or "mean- 
ingful" corners[l4], there should be 

kk,, < 0 (13) 

which means only two special kinds of extrema are 
considered: positive maximum and negative mini- 
mum. Thus as the scale increases, if the corner is 
enhanced, there should be: 

kk, > 0 (14) 

Due t o  noise, we do not want t o  enhance all the ex- 
trema, only the extrema with large curvature mag- 
nitude should be enhanced, so there should be: 

TH is a presetting threshold. The extrema with 
their curvature magnitudes smaller than TH should 
be smoothed so t o  suppress noise. Since any planar 
closed curve(convex[3] or un-convex[4]) evolved ac- 
cording to (4) will convergence t o  a "circular point", 
we ask that weak extrema should deform accord- 
ing to  curvature deformation. While the corners are 
enhanced, the curvature of the points around the 
corner may also be enhanced. To guarantee that  
the corners are more and more distinguished from 
other structures as the evolution proceeds, the dif- 
ference of the curvatures between the extrema and 
their neighborhood should increase which means the 
increase of the magnitude of k,, . We have following 
criteria for corner enhancement: 

1. At the extreme with lkl 2 T H ,  there should be 
ktk > 0 and k,,tk,, > 0 . 

2. At the extreme with lkl < T H ,  the curve should 
deform according t o  (4). 



Figure 1: Deformation function P(k) and its deriva- 
tive when X = 20 (a) f (x),  (b) f l (x)  

5 Corner enhancement by GGHF 

Now let's define a function f (x): 

where X is a very big positive integer, for example, 
X = 20. We have 

(18) 
See figure 1. 

Now let P(k) = f (k), we have: 

and 

and : 
p l ' x O ,  lk l>  11' (21) 

Other higher order derivatives of P with respect to  
k are also equal t o  zero when 1k1 > Ii'. Since there is 

> 0, the curvature scale space criteria are satis- 
fied. In the course of such evolution, no new corner 
will be generated, so we can concentrate our analy- 
sis on the existed corners. From (5) we have a t  the 
curvature extreme with lkl > Iil: 

And more: 

(a- .2) 

Figure 2: Corner enhancement. (a-1)Original curve 
1, (b-1)Enhanced curve, (c-1)Curvature deforma- 
tion. (a-2)Original curve 2, (b-2)Enhanced curve, 
(c-2)Curvature deformation. 

The first enhancement condition are satisfied. The  
extreme with lkl < I1' are deformed according t o  
(4). Thus the constraints for both scale space and 
enhancement are satisfied. 

Here we study some evolution when X is applied 
to  different values: 

1. X = l(other smaller A), then f (x) is the ramp 
function. Here the threshold T H  is no longer 
I<, but the corners with their curvature mag- 
nitude k > 311' are still enhanced, and other 
weaker corners have a similar behavior as cur- 
vature deformation. 

2. X = oo, we have a optimal evolution for edge 
enhancement in which the approximate equa- 
tions in this section become accurate equations. 
However this is a limited case which may violate 
the scale space criteria. 

6 Experimental results 

See Figure 2, the results from curvature defor- 
mation and our approach are compared. As we can, 
our approach enhance stronger corners and suppress 
noise. 

7 Conclusion 

We have combined Gaussian smoothing and cur- 
vature deformation into a general uniform geometric 
heat flow, from which, special evolution approaches 
for different purposes can be derived. T o  derive a 
corner enhancement deformation approach, we ad- 
dress two key points: first, Does it satisfy the scale 
space criteria? second: Does it enhances the strong 
corners? We present a new evolution approach 
which satisfies the two points and so can be used 
as pre-step for corner detection. 
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Appendix 

In this section we derive the formulas (5). Using 
the Frenet equations[2], we have: 

= 2 < v f ,  /3,d - p v k f  + ap? + a v k d  > 
= 2v(ap - Pvk) 

So we have: av - 
a t  

= ap - Pvk ( 2 5 )  

and: 

And: 

= (pk - a,)? + p,I? - ~ k ?  + a,? + a k d  

= (P, + a k ) d  

Let 0 be the angle between the tangent vector and 
the x axis, then 

So: 

So: 

And we have: ao - = k  
8s 

We have: 

ak a ao - - -- - 
a t  a t  as = (Pk - a,)k + P,, + a,k  + ak, (33) 




