
MVA '96 IAPR Workshop on Machine Vision Applications. November. 12-14. 1996. Tokyo. Japan

A Coarse Parallel Image Computing System for Remote Sensing

Joji Iisaka
Canada Centre For Remote Sensing

Department of Natural Resources Canada

Ahstract

This paper discusses with the feasibility and
value of a parallel image computing system for
analyzing remotely sensed data on a Personal
Computer Local Area Network. The design and
configuration of the system are presented. The
scheduling methods are also described.
Examples of remote sensing analysis procedures
that benefit from this type of systcm are
illustrated.
It is concluded that the parallel image
computing system is economical, viable, and
well suited to remote sensing, but needs to be
optimized for tlie system and to utilize more
complex processing approaches to take full
advantage of parallcl computing.

1 Introtluction

Remotc sensing is of great importance aror~nd
the world, especially for the purposes of earth
resorlrce and cnvironnient managemcnt. The
analysis of remote sensing data is complicated
involving many operations that require operator
input and that are time consuming. In the past
decades there has been an increase in tlie
number of data sources available along with
better resolution in spectral, spatial and time
domains, contribr~ting to the availability of an
increasingly larger volume of data. Parallel
image computing is expected to provide a nieans
to extract this information effectively and to
increase tlie speed and complexity of
information used in the analysis of remotely
sensed data.

This paper discusses the iniplementation of a
pilot system based on a Persolla1 Computer (PC)
Local Area Network (LAN).

* Address: 588 Booth St., Ottawa, Ont., Canada
E-Mail: Jo.ji.Iisaka(ci!geocan.nrcan.gc.ca

2 Conventional Image Analysis vs. Parallel
Image Computing for Remote Sensing

Conventional image analysis methods for
remote sensing, such as multi-spectral analysis,
have been developed using mostly pixel-by-pixel
based methods, and little spatial information
processing functions have been integrated into
the systems. Most importantly, conventional
methods are sequential (Ref.2,6,7). Furthermore,
these procedures still require a significant
human operator interaction and they have far to
go to reach tlie goal of automated feature
extraction from remotely sensing data.

A parallel-based system for computing image
data is expected not only to increase speed (Ref.
1). which allows data to be processed faster
(thus, saving valuable time), but also to achieve
more complex feature extraction by employing
data and information fusion processes in
parallel.

With the increase in the amount of data
available, it becomes necessary to process swiftly
those data so that it may used more efficiently.
Much of the feature extraction processing of
image data is parallel in nature, which yields a
natural advantage over an isolated single
computer. It is necessary to overlay or fuse
different types of information or data to extract
terrain features of higher level categories (e.g.
river or roads) rather than to extract lower level
image features (e.g. bright pixels or lines) (Ref.
3,4,5). High-end computers with a single
processor may not be particularly well suited to
the specific type of computation required.
Multiple lower-end computers operating in
parallel offer a much more realistic and practical
solution. A small parallel computer system need
only consist of several low-end computers
maintained in a network configuration.

A single computer processing data would have
the output of one image channel sitting idly

while it processed the next input channel. A
parallel computer system could have separate
computers processing separate image channels
simultaneously resulting in little or even zero
idle time. Furthermore, networks have been
popping up almost everywhere. It is now
possible to exploit the idle cycles of some
machines resulting in virtually free processing
time.

3 Design and Configuration

The initial parallel image computing design
calls for a Local Area Network (LAN)
consisting of three to five PCs. The computers
would run many in-house developed image
processing programs as well as an off-the-shelf
program called WiT that comes with a built-in
parallel execution ability (Ref. 8.9). The system
nlns under an object-oriented visual
programming environment for designing
computer algorithms with executable block
diagrams that use icons and links that symbolize
functions and data flow, respectively.

Five computers are currently being used: Each
of these computers has varying processors,
amounts of Random Access Memory (RAM),
and operating systems. They are connected to
each other by an Ethernet LAN (See Figure 1).

Figure 1: Layout of FCs in LAN for coarse parallel image
processing.

The supervisor program protocol dictates that
one computer nln the Graphical User Interface
(GUI) and the others run the Remote Access
Servers (RAS). A PC named as PCIMAGE will
run the GUI and two to four of the other
machines will nln the RAS. When a program
drawn graphically as a data flow diagram is
executed, the scheduler determines which

machines will execute which portions of the
program.

Each processor operates independently of the
others. The current setup also consists of
parallel computing on heterogeneous clusters as
opposed to homogeneous clusters. The former
describes the situation where all processors are
the same and the latter where different
processors are combined to solve a single
problem. A heterogeneous environment is
generally slower since conversion of data and
messages is necessary between computers. The
current network environment is a bus network.
All the processors are connected on a single
Ethernet line. To communicate with another, a
computer broadcasts its message on the bus.
Each computer has collision detection so that
when two computers try to send messages at the
same time, their messages are not lost. The
design is very effective so long as the utilization
of the network remains relatively low by other
non-related functions.

4 Scheduling Methods

The scheduler decides which operators to run on
which servers to maximize parallelism. There
are two types of scheduling modes, flat and
hierarchical, further enhancing the flexibility of
parallel computing.

The scheduler is able to analyze link
,connections and determine how to dispatch

operations effectively across the network of
servers. An operation is executed by sending the
required data objects to another server along
with instructions on what to do with those data.
While that server is busy, the scheduler
dispatches more data and another instruction to
another server. When a server is finished and
comes back with its results, it is dispatched
another instruction. The scheduler knows what
servers are capable of executing what
operations.

Data are generally not transported between the
GUI and the servers unless it is necessary.
Sometimes an entire algorithm, consisting of
input, operations, and outputs, can be executed
by a single server without any data transfer at
all. Data transfer is carried out when an image
or other piece of data needs to be displayed and
when a server that has data cannot perform the

operation required of it. The scheduler
maintains the location of where each data object
resides. When an operator needs to be
scheduled, it is assigned to the available server
that requires the least amount of data transfer. If
a link divides the network into multiple parallel
branches, the data will be physically copied to
multiple servers. After the copying, the servers
will execute in parallel.

Operators execute in the order they become
ready, unless they become ready at the same
time at which point the scheduler is free to
execute any one first. User interface operators
are always scheduled to execute whenever any of
its inputs are ready. Another operator is ready
when all of its inputs are available. After
execution it sends its orllprlt to all of its
descendants. If a descendant is still processing
some previous inputs then the ancestor waits to
send its output to the desceridarit until it has
completed its execution.

There are two modes of scheduling, flat and
hierarchical. The latter only applies to a
program with hierarchical operators. They are
used to facilitate tlie repetition of commonly
used portions of a program. In flat scheduling
mode, the scheduler is free to choose any
available operators to execute regardless of
which program tlie operators belong to. Data
enter a hierarchical operator as soon as it is
available and are executed immediately. Or~tpr~ts
are sent away as soon as they are ready. In
hierarchical scheduling mode, tlie operators
behave as thollgli they were primitive operators.

The main program handles its data conversion
and communication transparently using IPC
(Inter-Processor Communication). Actual data
transfer between tlie GUI and the servers is done
only when absolutely necessary. The standard
used for data distribution is external Data
Representatio~i (XDR) produced by tlie Open
Look Alliance. It specifies standards for
encoding data so tliat they may be exchanged
between any compr~ter architectures.

5 Examples

There are many examples tliat demonstrate tlie
ability of parallel image computing. Some of
these are niulti-spectral channel processing and
spatial feature extraction through pixel

swapping. Each of these examples is parallel in
nature and can thus benefit from parallel
computing (Ref. 3,4,5).

Multi-spectral channel processing involves
processing the separate image channels of a data
set to extract information. Essentially, it entails
performing the same or similar operations on
each of the channels of an image. This example
clearly demonstrates one of the most simple
cases of parallelism. Parallelism is advantageous
here because the six completely independent
operations can each be performed on a separate
computer. Parallel computing also allows a
channel to be used immediately for other tasks
after being processed rather than waiting for all
six to be done.

Pixel swapping is a very complicated example of
the benefits of parallel computing. Pixel
swapping extracts spatial entities like points,
lines, regions, inner regions, and boundaries
from a binary image (Ref. 3,4,5). As seen in
Figure 2, data from some operators are often
used by many other operators. Using a parallel
computing system, any output that is used by
more than one operator can be computed in
parallel. For example, unaryOp #1 sends its
output to display # I , 2D convolution #1, and
aluOp. Each of these three operations can be
executed by a different machine thus eliminating
the time wasted in processing the same output
three times by different operators one after
another. With parallelism there will be no delay
in passing data along when a computer has
completed one operation.

These two examples illustrate the bulk of
possibilities that may benefit from parallel
processing. They also represent the very parallel
nature of the analysis of remotely sensed data.

6 Results and Conclusions

In preliminary testing, using only three
computers, no outstanding gain in speed was
observed. In most cases the time to execute was
almost fifty percent greater than that of using a
single computer. As the data volume of remotely
sensing images is much larger than that of
images of other applications, image transfer
among distributed PCs through conventional
LAN links might have caused this problem and
so no improvement in performance was

observed. However, this situation sliould be
solved by installing many one-board PCs in an
enclosi~re through local bus of PCs such as PC1
(Peripheral Component Interconnect). The
coarse parallel iniage computing system appears
to be very economical and viable. The parallel
system is ideally suited to processing remotely
sensed data due to the parallel nature of
techniques used to analyzed these types of data.
Further investigation, with one-board PCs and
more computers and more complicated
programs, is still required to evaluate the full
efficiency of the system.

7 Acknowledgments

The author wishes to express hearty thanks to
Dilip A. Ogale, a student from the University of
Waterloo, for assistance with programming and
experimentation for this study.

8 References

1) Baker, Low and B. J. Smith. Parallel
Programming. McGraw-Hill, New York,
1996.

2) Lintz Jr., J. and D. S. Simonett. Remote
Sensing of Environment. Addison Wesley

Publishing Company, Reading,
Massachusetts, 1976.

3) Iisaka, J. and T. Sakurai-Amano,
"Automated Terrain Feature Extraction from
Remotely Sensed Images integrating
Spectral, Spatial and Geometrical Attributes
of Objects", Proc. GIS/LIS195(1995) Vol. 1
pp.486-495.

4) Iisaka, J. "Structural spatial information
extraction from remotely sensed data.' Proc.
IGARSS(1989), Vancouver, B.C., pp.1224-
1227.

5) Iisaka, J. and W. Russell. "Microcomputer
based Terrain Understanding and Land
Information Processing System", Proc. 7th
Thematic Conference on Remote Sensing for
Exploration Geology(1989), Calgary,
Alberta, pp.939-953.

6) Richard, J. A. Remote Sensing Digital Image
Analysis. Springer-Verlag, New York, 1986.

7) Thomas, I. L., V.M. Benning and N. Ching.
"Classijcation of Remotely Sensed " ,
Imprint by IOP Publishing, Bristol, England,
1987.

8) WIT Version 4.8.5 Programmer's Manual.
Logical Vision Ltd., Burnaby, B.C., 1995.

9) CViT Version 4.8.5 User 's Manual. Logical
Vision Ltd., Bumaby, B.C. 1995

u n a w e x p
e x p e s a m (A-. K) 7 1 3 Dh(*al .I
o t n w r p 8-M un-d I, L-1 m 1

m *3 r w w RE^

Do(*syn

nfrsrt (0 . 0) off** (0 . 0) PI t
cx*WIYw 8 bl u n + (g W D u t l w 8-M unspnsd &,,. , ,,rT

Dhow C4

Y L W 1 - -la

Figure 2: Parallel processing of spatial feature extraction by pixel swapping.

42

