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Abstract 
From a hardware standpoint a heterogeneous 

architecture such as an SIMD array coupled 
onto a MIMD system, will yield a powerful 
solution for real time embedded vision tasks. 
From a software standpoint there is a need to 
approach this heterogeneous system in a 
homogeneous way. We investigated the 
feasibility of a uniform parallel programming 
approach on a heterogeneous machine. Using 
the parallel language CC++ we can express 
functional parallelism with constructs like par 
and parfor and hide the data parallelism, like 
images distributed over SIMD PEs, in CC++ 
classes. We investigated a way of parallel 
programming using arrays of buckets. These 
bucket-arrays can be distributed over MIMD 
Processing Units, SIMD Processing Elements or  
both. A bucket array is hidden in a CC++ class 
and can be approached by independent 
producer and consumer threads of the parallel 
program. We analysed the feasibility and 
efficiency of this approach with the constrained 
Euclidean Distance Transform while varying the 
number of processors from 2 to 128. 

1 Introduction 
In real-time embedded vision task such as in 

robot vision or autonomous car driving, 
computing power is necessary on all levels of 
operation. These tasks start with a plain image 
and while processing, the type of operations 
moves from arithmetic to symbolic and the 
amount of data to process reduces, until 
eventually some decision based on the analysed 
data can be made. Parallel computing power is 
useful on all levels of operation: Low level or  
image processing, Intermediate level or object 
understanding, High level or scene 
understanding and finally Mission control. 

From a hardware standpoint a heterogeneous 
architecture, e.g. an SIMD array coupled onto a 
MIMD system, will yield a powerful solution. 
Generally an SIMD architecture [I], [2], [3] is 
suitable to exploit the fine grain parallelism of 
the low-level processing operation. Such an 
architecture often has also proper interfaces with 

the sensor and the host system. E.g. the Smart 
Camera [2] couples a 2D sensor array on chip 
with a single bit Linear Processor Array, and the 
IMAP [I]  series of systems is based on a dual 
ported memory coupled on chip with an 8 bit 
Linear Processor Array and a shift register 
section for shifting in video lines during 
operation. 

Shared memory multi-processor systems 
supporting multi-threading, or distributed 
memory multi-processor systems (MIMD), 
coupled onto the SIMD systems [I21 are quite 
able to exploit their coarse grain parallelism for 
high level operations. Although for numerous 
applications either SIMD or MIMD systems 
alone will be sufficient for the task, in many 
hierarchical applications with a video speed 
data-processing character, a heterogeneous 
SIMD-MIMD architecture may provide a more 
powerful solution. 

From a software standpoint there becomes a 
need to approach this heterogeneous system in a 
homogeneous way, making the parallel 
programming of such a system a agreeable 
activity. We investigated the feasibility of a 
uniform parallel programming approach on 
such a heterogeneous machine [4]. This 
approach should be generic, usable on many 
heterogeneous architectures. 

As our interest is in architecture design and 
smooth programming of applications, we 
adopted a parallel language from which we 
believed it could suit our needs. In the parallel 
language Compositional C++ [5] we can express 
functional parallelism with constructs like par 
and parfor blocks and at the same time hide the 
data parallelism like images distributed over 
SIMD PEs in CC++ classes. 

2 Benchmark algorithm 
implementations 
As example we use the constrained Euclidean 
Distance Transform. Assume that we have a 
linear array [6] MIMD or SIMD, in which the 
image is column-wise mapped over the P 
processors. 



Figure 1. A bucket-array distributed over processing units 

Various implementations of the cEDT exist: bucket. When the array is distributed over 
processors we assume that a bucket of the arrav 

I. The pure SIMD method, using the bit-wise entirely resides on a single processor. See figurk 
sum of successive dilations of the objects in 1 where a bucket-array with 6 buckets, labelled 
the image. This uses a local 3x3 { I ,  3, 4, 8..9, rest} is distributed over three 
neighbourhood around each pixel. MIMD Processing Units. 

2. The Borgefors method which is an 
algorithm based on a two pass scan over the 
image which uses a recursive 3 x 3 
neighbourhood around each pixel [7]. 

3. A method based on using only the pixels 
that are likely to change 181. 

Although the latter method of processing 
pixels in queues is known for a while [9], we 
adopted this sequential approach to a parallel 
approach using distributed arrays of buckets 
[lo]. These bucket arrays can be distributed 
over MIMD Processing Units. SIMD Processing 
Elements or both. A bucket array is hidden in a 
CC++ class and can be approached by 
independent producer and consumer threads of 
the parallel program. 

A hircket is defined as a data structure (C++: 
class) with two access functions (C++: public 
functions): a p u t  0 function to put data 
elements with certain characteristics into a 
bucket and a y e t  ( ) function to retrieve an 
arbitrary data element from this bucket. This 
definition allows different implementations of 
the bucket data structure, like FIFO, LIFO or 
Linked List. Important is, however, that the user 
may not use this implementation knowledge, as 
the bucket data structure may in our case be 
distributed over a number of processors, which 
tilay destroy the implementation (e.g. the FIFO) 
character. 

Usually such a bucket-array is emptied and 
processed, whereupon the processed data items 
are put into the array again, possibly in other 
buckets. This means that processors only read in 
their own buckets, but may send data items over 
a network to buckets in another processor. More 
than one array can be involved in the processing 
and arrays may even reside on other parts of the 
heterogeneous architecture. By way of example, 
figure 2 shows an image crinkle-wise stored 
onto Processing Elements of an SIMD array. 

A hl~cker-nrm?, is defined as an array of 
buckets where each bucket has a label, a 
numeric value or range of values attached to it. 
The bucket-array as a whole is considered as a 
single data structure with two access-functions, 
4imilar to the single bucket: a p u t  ( ) function to 
put an item in a specific bucket and a g e t  ( ) 
function to retrieve an arbitrary item from a 
\pecific bucket from the array. The buckets in 
the array should have unique non overlapping 
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labels. Consequently in the bucket-array we can Figure 2. Using bucket arrays to 
\tore data with similar properties in a single redistribute data items over processors. 
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If the SIMD array allows indirect addressing, 
buckets can be implemented on them too, and 
even if the array has no long distance network to 
route data items to buckets on PEs further away, 
research showed that a Nearest Neighbour 
network can be programmed to do so [ l  I ] .  

When each PE has stored the object pixels that 
reside in his part of the distributed image in a 
first bucket array, than after e.g. a labelling 
procedure all pixels of one object can be stored 
into one bucket of a second bucket array. Where 
the first array resides on the SIMD system, the 
second array may reside on an MIMD system. 
This can be profitable for some applications, 
where the PUS of the MIMD system can proceed 
with the object and scene interpretation and the 
SIMD system can grab a new image and pre- 
process it. Concluding: programming with 
distributed images and bucket arrays in 
combination with functional parallel constructs 
allow us to program hierarchical applications on 
heterogeneous architectures. 

3 Analysis of the Euclidean Distance 
Transform 

To show the feasibility and efficiency of the 
homogeneous parallel programming approach 
using bucket-arrays, this section describes in 
pseudo CC++ the analysis of the constrained 
Euclidean Distance Transform (cEDT) while 
varying the number of processors from 2 to 
128. For this experiment we used CC++ with the 
Nexus runtime system [13] mapped onto the 
multi-threading facility of Solaris 2.5. The 
cEDT starts from the object edges and 
propagates contour by contour inward in a wave 
front way, writing the distance to the object 
border in an output image. We will discuss three 
methods of the cEDT: Synchronised, 
Unsynchronized and Enhanced 
Unsynchronized. In the first method, all 
processors perform one propagation step inward 
in one iteration. If the processing of the front in 
one processor invokes candidates residing in the 
neighbouring processor, these candidates are put 
into a bucket of the neighbouring processor. 
When all processors are ready with the 
processing of the current front, the wave is 
allowed to propagate one step inward. 

The pseudo CC++ code of a synchronised 
cEDT program [8], [lo] is: 

/ /  allocate distributed images 
dist-bit-image source(256,256); 
dist-grey-image result(256,256); 

/ /  allocate two distributed bucket-arrays per wind direction 
/ /  (SO each processor has 2 times 8 buckets in his local memory) 
dist-grey-bucket N[2],NE[2],E[2],SE[2],S[2],SW[2],W[2],NW[2]; 

/ /  load source; column-wise map the data-types over processors 
/ /  initially fill the buckets by scanning the source 
parfor(x=O; x<=255; x++) { 

for(y=O; y<=255; y++) { 
if (source.val(x,y) == OBJECT) {result.val(x,y) = 0) 
else { 
result.val(x,y) = MAXVAL; 
if (source.val(x+l,y) == OBJECT) ( W[O].put(x,y,l) 1; 
if (source.val(x+l,y+l) == OBJECT) { SW[O] .put(x,y,2) 1; 
//etc for all other wind directions of the neighbourhood 
1 

I 
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/ /  perform the wave front propagation in a data parallel way 
ready = FALSE; i = 0 ;  HorVerCoeff = 3; DiagCoeff = 6; Diff = 10; 
parwhile ( !ready) { 

ready = TRUE; 
parwhile(!W[i].empty) { 

pixel a = W[i] .get; 
if (result.val(a.x, a.y) > a.val { 

result.val(a.x, a.y) = a.val; 



W[i].put(a.x-1, a.y, a.val + HorVerCoeff); 
ready = FALSE 

1 
1 
parwhile(!SW[i].empty) ( 

pixel a = SW[i] .get; 
if (result.val(a.x, a.y) > a.val { 

result.val(a.x, a.y) = a.val; 
SW[il .put (a.x-1, a.y+l, a.val + DiagCoeff); 
S[i].put(a.x, a.y+l, a.val + HorVerCoeff); 
W[il.put(a.x-1, a.y, a.val + HorVerCoeff); 
ready = FALSE 

1 
1 
/ /  etc. for all other wind directions 

/ /  update coefficients, swap read and write bucket-arrays 
HorVerCoeff += 2; DiagCoeff += Diff; Diff += 4; i = mod(2,i+l); 

1 

The pseudo source code of the 
unsynchronised version is almost identical to the 
synchronised version. The synchronisation is 
realised by using separate read and write bucket- 
arrays. If, however, results are put back in the 
same (read-write) bucket-array, an 
unsynchronised version is obtained. Then all 
processors process the full cEDT over the pieces 
of object that reside in their own memory. The 
processors can proceed until they are blocked 
because no more work is generated in their own 
piece of the image. Again, if the processing of 
the front in one processor invokes candidates 
residing in the neighbouring processor, these 
candidates are also put into the read-write 
buckets of the neighbouring processor. As 
candidates generated by neighbours are delayed 
with respect to candidates generated by the own 
processor there will be a preference for own 
candidate points in each processor. To enlarge 
this effect, it can even be forced by putting 
candidates for neighbouring processors in a 
separate neighbour bucket array that is only 
emptied into the read-write bucket array when 
all processors are ready. These new candidates 
are processed until the read-write buckets are 
again empty, the neighbour bucket array is 
emptied into the read-write bucket array, etc ... 

It will be clear that the synchronised method is 
more an SIMD approach and the 
unsynchronised method more an MIMD 
approach. The saving up of neighbour 
candidates in a separate bucket-array is also 
more in accordance with the DMA block data 
transfer between MIMD processors than the 
transfer of one candidate at a time. as can more 
easily be realised in SIMD systems. Concluding: 
In SIMD, with many simple processors, 
synchronisation and neighbour communication 
is easy. In MIMD, with less more powerful 
processors, i t  is more beneficial to let the 

processors go ahead as far as they can come, as 
synchronisation and communication is slower. 

Figure 3 on the next page shows the average 
memory access overhead plotted against the 
number of processors { 2,4, 8 .. 128) for an 
enhanced unsynchronised version of the cEDT 
on a 256' image. The average memory access 
overhead is obtained by taking the total 
memory access overhead and divide it by the 
number of processors. The total memory access 
overhead is the number of excess readstwrites on 
all processors in comparison with a single 
processor version of the same algorithm. The 
figure shows that for this image the enhanced 
unsynchronised version of the algorithm is 
equally efficient for a modest number of 
processors (16) and for a large number of 
processors (128). This can be explained by the 
fact that for a modest number of processors 
most objects remain within the local memory of 
the processor and can hence be processed 
locally. When the number of processors 
increase, more objects cross the processor 
boundary and give rise to propagation seeds that 
invoke new free running wave fronts that 
partially overwrite the values calculated by older 
waves. In the high limit case with 256 (SIMD) 
PEs this algorithm is almost equal to the 
synchronised version of the algorithm, as all 
objects always cross the PE boundary. 

4 Conclusions 
Programming with CC++ and the introduction 

of distributed abstract data-types such as images 
and bucket-arrays is a method that theoretically 
allows to smoothly program heterogeneous 
SIMD-MIMD architectures in a single parallel 
program. However, research is still necessary on 
the port of runtime systems onto such a 
heterogeneous architecture. 
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Figure 3 Average memory overhead per processor from I to 128 processors 

Surprisingly enough, a single version of the 
cEDT, the enhanced unsynchronised version, 
can efficiently run on both an MIMD system 
with a modest number of PUS and on an SIMD 
system with the number of PEs in the order of 
the columns of the image. 
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