
MVA'94 IAPR Workshop on Machine Vision Applications Dec. 13-1 5. 1994. Kawasaki

Image Metamorphosis Using Optical Flow Techniques

Minas E. Spetsakis
Dept. of Computer Science, York University
4700 Keele Street, North York, ONTARIO

CANADA, M3J lP3
e-mail minas@cs.yorku.ca

ABSTRACT

This paper presents an application of optic flow esti-
mation to image metamorphosis. It uses a state of the
art optical flow algorithm to do image metamorpho-
sis, which is used in video production. The method
presented automates the labor intensive process of
image animation. It an advanced optic flow algorithm
but the rest of it is simple: most of the code fits in the
limited space of this summary.

1. Introduction

Image metamorphosis or morphing is a very useful
technique in computer graphics and animation. It is rou-
tinely used commercially for special effects. In a recent
paper Beier and Neely [2] described how this is done by
professional animators at Pacific Data Images and Wol-
berg [I21 how it is done by their colleagues at Industrial
Light and Magic. Despite the differences the two meth-
ods consist mainly of the following steps.
* The operator specifies via a GUI the deformation.

The result is a sparse description of the deformation.

* The system computes the complete deformation
field from the sparse data.

* The system warps the image and interpolates the
color.

* The cycle is repeated until the result is good.

The procedure can be applied to still images or on indi-
vidual frames from movies. Major portion of the time is
spent on manually specifying the deformation.

2. Using flow to do morphing

In this paper we present a method to estimate the
deformation field using optical flow algorithms developed
for vision. These algorithms compute the amount of
deformation (flow) between successive images in an
image sequence. These algorithms are often considered
unstable for the simple reason that when used with struc-
ture from motion algorithms the end result is unstable. If

one is concerned only with the deformation field then sev-
eral flow algorithms work fairly well [I] in the sense that
the needle maps look intuitively correct. It is also rela-
tively straightforward to take two images from the same
sequence and transform one into another. This technique
is used by several video compression schemes like
MPEG.

Something similar can be done for morphing. Take
the images of two people and compute the deformation
between them and then use this to morph one into
another. The problem is that although the images are not
completely different (e.g. both contain faces) the differ-
ence is large enough to confuse most flow algorithms [7,
91. As opposed to the flow algorithms used for structure
from motion, algorithms for estimating the deformation
for morphing need not wony that much about the aper-
ture problem (the ambiguity of the deformation field
when examining a small patch of an image as viewed
through an aperture) or accurate detection of discontinu-
ities. But they should work well for pairs of images where
the constant intensity assumption is grossly violated and
the displacement is large and varying. We tried several
algorithms and the one that worked best uses affine model
for flow with Gabor filtering. The Gabor filters are partic-
ularly good at capturing the motion of shapes without
much regard to slow variations of intensity [6] and the
affine model can accommodate the varying flow field
within the large support of the Gabor filters.

3. Affine flow algorithm

Assume that we have a series of filters g, for
q = 1. . q,,. We can try to minimize

where the superscript (g) denotes convolution of the
image I with the filter g,, in this case a Gabor filter, u and
v are the components of the flow and the subscripts
denote partial derivatives with respect to x , y and t . This
is similar to what is used in [5] which gives very stable
results with slow varying flow. But since we use Gabor
filters with quite big support, what we do in effect is
blend constraints from a large area of the image and we

The support of the NSERC (App. NO. OGP0046645) is gratefully acknowledged

cannot assume that the flow remains constant over the
whole area. But we can relax the restriction considerably,
by using the assumption that the flow can be, more or
less, described by an affine equation in a small neighbor-
hood. This basic idea has been used in various forms in
the past [3, 10.41. The flow then takes the form

This will allow the size of the filter (or the variation of the
flow within a given area) to be considerably larger. Then

We now take a linear combination over a small region
defined by function gq to get the affine residual

lnerr(x01 YO) =

7 j I,(x,. YO; X, Y) ~ , (X - XO. Y - YO) dr dy =
mm

~;~'(x,. y,)u(xo. YO) + Ilfi)(x,, y,)v(xo. YO) +

IF)"'(", y,)u,(xo, Yo) + ~y)(xO. yo)v,(xo7 Yo) +

I?~)(X,, Y O) U ~ (X O ~ YO)+ ~:Ry)(xo. YO)V~(X". YO) +

~ / ~) (x o , YO)

where the superscripts mean convolution with the corre-
sponding filter. The filter gqx comes from terms like

I~~~ ' (XO, YO) =

7 j y) . (X - XO). gq(x - I., Y - YO) dy
-m-m

Then the sum of squared absolute errors is

I,,,, = I;% + I ~ V + I;RX)ux + I ~ V , + I;o)uy + l y v y + IIR)

We used absolute values because the filters are complex
valued Gabor filters. Notice that some of the convolutions
are with gq(x, y) . x etc. The x multiplier comes from the
derivative terms. The Euler equations for this minimiza-
tion are

where the star superscript denotes complex conjugate and
I,,, is defined in Eq. (2). A common difficulty with such
algorithms is the computation of derivatives. It is well
known that the derivatives amplify the higher frequencies
which are dominated by noise. But this is not the whole
story. The derivatives are numerically hard even with syn-
thetic images where noise is not a problem. In [8] is
shown that the accuracy of the numerical differentiation
depends on the method used. If a two tap filter is used
(finite differences) the result is accurate for the lower fre-
quency components of the signal (about one sixth of the
spectrum) and less and less accurate for higher frequen-
cies. The accuracy can be increased using more expensive
filters (more taps). In effect using more taps one can
increase the part of the spectrum that the computation is
accurate.

But using more expensive filters will not solve all
the problems. The main difficulty is introduced by terms
like

where we take the derivative of what is essentially the
product of three signals: ILRx) is a signal and I*,,~~ is com-
posed of sums of products of two signals: derivatives of
the image and derivatives of the flow components. The
width of the spectrum of the product of two real signals is
more or less the sum of the widths of the factors of the
product. To see this consider an image that is just a cosine
cos o l x . If we multiply it by another image that is also a
cosine cosw2x, then the result will contain the
cos(ol +o,). So the spectrum of the result will be wider
than each of the components.

If, on the other hand we use Gabor filters the band-
width could even decrease. A signal that has gone
through convolution with a Gabor function

can be written in the following form
- e j (k , x + k , ~)

I - f l (& Y)

where f, is a bandlimited signal. If we multiply two sig-
nals s,s2* we get f l f2* which with the proper choice of
the Gabor parameters can have a narrower band than the
original signals s if alkl 2 3.

We used the Conjugate Gradient method to solve
this linear system.

4. Image Warping

Warping is an expensive operation because we have
to interpolate at every pixel. We used linear interpolation
which proved sufficient for the quality of the input
images. The warping is done in two stages: first we round
the displacement vectors and warp by whole pixels. This
is a very cheap operation. Then we correct by adding the
derivatives times the residual of the rounding doing in
effect linear interpolation. The derivatives have to be
themselves warped by the rounded flow as well so that

they follow the pixel which they are supposed to cerrect.
The MediaMath [I I] code is shown in Fig. I.*

It is easy to see that this can be extended to second order
interpolation if the results are not satisfactory by comput-
ing the second order derivatives and multiplying them by
second degree monomials of du and dv. The results
using the second order interpolation were only slightly
better than the linear one and third order were vitualy
indistinguishable from the second order.

5. Animating the morphing

To produce the morphing we need the displacements
from image one to image two and from image two to
image one. Then we calculate the intermediate images
deforming both images towards each other, so that they
"meet" in between and we take a weighted average (cross
dissolve). By varying the weights and the amount of
deformation we can create a smooth transition from one
image to the next. The MediaMath code is shown in Fig.
*

function linwarp-fimg(im, u, v)
"Warps the image using linear interpolation "
I
local im12, iml2-x, iml2j, ru, rv, du, dv;

/ * Integer warp the image */
im12 = intwarp-fimg(im, ru=round-fimg(u) ,

rv=round- fimg (v)) ;
/*anditsderivatives */

iml2-x = intwarp-fimg(D-x(im), ru, rv) ;
im12-y = intwarp-fimg(D_y(im), ru, rv) ;
du = u - ru;
dv = v - rv;

/ * add the derivative times the */
/ * residual of the rounding */

im12 += iml2_x*du;
im12 += iml2_y*dv;
im12; / * return im12 */

1 ;

Fig. 1. Mediamath code for warping using linear interpo-
lation.

6. Results

We used the algorithm to morph the images of vari-
ous people. The image sequences could be viewed using
MediaMath and xv (about one image every three seconds)
or on an SGI using moviemaker/movieplayer. Nine of the
frames are shown on Fig. 3. For comparison we show the
result of the fifth frame using Horn and Schunck algo-
rithm [7] in Fig. 4. The results with the Gabor-affine algo-
rithm are much better.

7. Conclusions

uv=Gb-A-flow(iml,im2, :sig=O.O, :lam=lO.O,
:maxits=lO,
:solver= 'ConGrad,

:scls = 3,
:scll = 0.7,
:w-sgrod = 3.0,
: oriens=4) ;

uv-i=Gb-A-flow(im2, iml, :sig=O. 0, :lam=lO. 0,

xv = spawn ("xv" , "morph ") ;

for (i=l; ic=lO; i++)
I
local ru, rv, du, dv, uv-s, uv-si, temp;

uv-s = uv*(i/lO.O);
uv-si= uv-i*((10-i)/lO. 0);

im12 = linwarp-fimg(im2, uv-s->u, uv-s->v);
im12 *= (10-i)/10.0;
temp = linwarp-fimg(im1, uv-si->u, uv-si->v) ;
temp *= i/10.0;
im12 += temp;

wri te-img(iml2, "morph", :rescale=nil) ;
sleep(1);
kill (xv, SIGQUIT) ;
sleep(1);

1 ;

Fig. 2. The MediaMath code to animate the morphing us-
ing xv.

We presented an approach to morphing that does not Fig. 3. Nine images of one young male morphing into an-
require a human operator by using flow techniques from

other.
computer vision. We plan to extend the approach to mov-
ing images and introduce a simple way for the operator to
guide the flow algorithm in cases that the images have
parts that are extremely different.

MedinMnlh syntnx is very similar to C

Fig 4. The fifth image using Horn and Schunck algo-
rithm.

References

1. J. L. Barron, D. J. Fleet, and S. S. Beauchemin, Per-
formance of Optical Flow Techniques, RPL-
TR-9 107, Robotics and Perception Lab, Queen's
University (July 1993).

2. T. Beier and S. Neely, "Feature Based Image Meta-
morphosis," SIGRAPH, pp. 35-42 (1992).

3. M.J. Black and P. Anandan, "A framework for the
robust estimation of optical flow," ICCV, pp.
23 1-236 (1993).

4. M. Campani and A. Verri, "Computing Optical Flow
from an Overconstraint System of Linear Equa-
tions,'' CVPR, pp. 22-26 (1990).

5. Hsiao Jing Chen, Yoshiaki Shirai, and Minoru
Asada, "Obtaining optical flow with multi orienta-
tion filters.," CVPR, (1993).

6. D. J. Fleet and A. D. Jepson, "Computation of com-
ponent image velocity local phase information," Intl'
Journal of Computer Ksion 5 pp. 77-104 (1990).

7. B. K. P. Horn and B. G. Schunck, "Determining
Optical Flow," Artificial Intelligence 17 pp. 185-204
(1981).

8. E. Karabassis and M. E. Spetsakis, Families of tem-
plates for fundamental image operations, York TR
CS-91-07 (1991).

9. B. Lucas, Generalized Image Matching by the
Method of Differences, PhD Dissertation, Dept. of
Computer Science, Carnegie Mellon University
(1984).

10. F. Meyer and P. Bouthemy, "Region based matching
in an image sequence," ECCV, pp. 476-484 (1992).

1 1. Minas Spetsakis, "MediaMath: A reasearch environ-
ment for vision research," Vision Inte#ace, pp.
118-126 (1994).

12. G. Wolberg, Digital Image Warping, IEEE Com-
puter Society Press Monograph (1990).

