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ABSTRACT 

This paper presents an application of optic flow esti- 
mation to image metamorphosis. It uses a state of the 
art optical flow algorithm to do image metamorpho- 
sis, which is used in video production. The method 
presented automates the labor intensive process of 
image animation. It an advanced optic flow algorithm 
but the rest of it is simple: most of the code fits in the 
limited space of this summary. 

1. Introduction 

Image metamorphosis or morphing is a very useful 
technique in computer graphics and animation. It is rou- 
tinely used commercially for special effects. In a recent 
paper Beier and Neely [2] described how this is done by 
professional animators at Pacific Data Images and Wol- 
berg [I21 how it is done by their colleagues at Industrial 
Light and Magic. Despite the differences the two meth- 
ods consist mainly of the following steps. 
* The operator specifies via a GUI the deformation. 

The result is a sparse description of the deformation. 

* The system computes the complete deformation 
field from the sparse data. 

* The system warps the image and interpolates the 
color. 

* The cycle is repeated until the result is good. 

The procedure can be applied to still images or on indi- 
vidual frames from movies. Major portion of the time is 
spent on manually specifying the deformation. 

2. Using flow to do morphing 

In this paper we present a method to estimate the 
deformation field using optical flow algorithms developed 
for vision. These algorithms compute the amount of 
deformation (flow) between successive images in an 
image sequence. These algorithms are often considered 
unstable for the simple reason that when used with struc- 
ture from motion algorithms the end result is unstable. If 

one is concerned only with the deformation field then sev- 
eral flow algorithms work fairly well [ I ]  in the sense that 
the needle maps look intuitively correct. It is also rela- 
tively straightforward to take two images from the same 
sequence and transform one into another. This technique 
is used by several video compression schemes like 
MPEG. 

Something similar can be done for morphing. Take 
the images of two people and compute the deformation 
between them and then use this to morph one into 
another. The problem is that although the images are not 
completely different (e.g. both contain faces) the differ- 
ence is large enough to confuse most flow algorithms [7, 
91. As opposed to the flow algorithms used for structure 
from motion, algorithms for estimating the deformation 
for morphing need not wony that much about the aper- 
ture problem (the ambiguity of the deformation field 
when examining a small patch of an image as viewed 
through an aperture) or accurate detection of discontinu- 
ities. But they should work well for pairs of images where 
the constant intensity assumption is grossly violated and 
the displacement is large and varying. We tried several 
algorithms and the one that worked best uses affine model 
for flow with Gabor filtering. The Gabor filters are partic- 
ularly good at capturing the motion of shapes without 
much regard to slow variations of intensity [6] and the 
affine model can accommodate the varying flow field 
within the large support of the Gabor filters. 

3. Affine flow algorithm 

Assume that we have a series of filters g, for 
q = 1. . q,,. We can try to minimize 

where the superscript (g) denotes convolution of the 
image I with the filter g,, in this case a Gabor filter, u and 
v are the components of the flow and the subscripts 
denote partial derivatives with respect to x ,  y and t .  This 
is similar to what is used in [5] which gives very stable 
results with slow varying flow. But since we use Gabor 
filters with quite big support, what we do in effect is 
blend constraints from a large area of the image and we 
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cannot assume that the flow remains constant over the 
whole area. But we can relax the restriction considerably, 
by using the assumption that the flow can be, more or 
less, described by an affine equation in a small neighbor- 
hood. This basic idea has been used in various forms in 
the past [3, 10.41. The flow then takes the form 

This will allow the size of the filter (or the variation of the 
flow within a given area) to be considerably larger. Then 

We now take a linear combination over a small region 
defined by function gq to get the affine residual 

lnerr(x01 YO) = 

7 j I,(x,. YO; X, Y ) ~ , ( X  - XO. Y - YO) dr dy = 
mm 

~;~'(x,.  y,)u(xo. YO) + Ilfi)(x,, y,)v(xo. YO) + 

IF)"'(", y,)u,(xo, Yo) + ~y)(xO.  yo)v,(xo7 Yo) + 

I?~)(X,, Y O ) U ~ ( X O ~  YO)+ ~:Ry)(xo. YO)V~(X". YO) + 

~ / ~ ) ( x o ,  YO) 

where the superscripts mean convolution with the corre- 
sponding filter. The filter gqx comes from terms like 

I~~~ ' (XO,  YO) = 

7 j y) . (X - XO).  gq(x - I., Y - YO) dy 
-m-m 

Then the sum of squared absolute errors is 

I,,,, = I;% + I ~ V  + I;RX)ux + I ~ V ,  + I;o)uy + l y v y  + IIR) 

We used absolute values because the filters are complex 
valued Gabor filters. Notice that some of the convolutions 
are with gq(x, y) . x etc. The x multiplier comes from the 
derivative terms. The Euler equations for this minimiza- 
tion are 

where the star superscript denotes complex conjugate and 
I,,, is defined in Eq. (2). A common difficulty with such 
algorithms is the computation of derivatives. It is well 
known that the derivatives amplify the higher frequencies 
which are dominated by noise. But this is not the whole 
story. The derivatives are numerically hard even with syn- 
thetic images where noise is not a problem. In [8] is 
shown that the accuracy of the numerical differentiation 
depends on the method used. If a two tap filter is used 
(finite differences) the result is accurate for the lower fre- 
quency components of the signal (about one sixth of the 
spectrum) and less and less accurate for higher frequen- 
cies. The accuracy can be increased using more expensive 
filters (more taps). In effect using more taps one can 
increase the part of the spectrum that the computation is 
accurate. 

But using more expensive filters will not solve all 
the problems. The main difficulty is introduced by terms 
like 

where we take the derivative of what is essentially the 
product of three signals: ILRx) is a signal and I*,,~~ is com- 
posed of sums of products of two signals: derivatives of 
the image and derivatives of the flow components. The 
width of the spectrum of the product of two real signals is 
more or less the sum of the widths of the factors of the 
product. To see this consider an image that is just a cosine 
cos o l x .  If we multiply it by another image that is also a 
cosine cosw2x, then the result will contain the 
cos(ol +o,). So the spectrum of the result will be wider 
than each of the components. 

If, on the other hand we use Gabor filters the band- 
width could even decrease. A signal that has gone 
through convolution with a Gabor function 

can be written in the following form 
- e j ( k , x + k , ~ )  

I - f l (& Y) 

where f, is a bandlimited signal. If we multiply two sig- 
nals s,s2* we get f l  f2* which with the proper choice of 
the Gabor parameters can have a narrower band than the 
original signals s if alkl 2 3. 

We used the Conjugate Gradient method to solve 
this linear system. 

4. Image Warping 

Warping is an expensive operation because we have 
to interpolate at every pixel. We used linear interpolation 
which proved sufficient for the quality of the input 
images. The warping is done in two stages: first we round 
the displacement vectors and warp by whole pixels. This 
is a very cheap operation. Then we correct by adding the 
derivatives times the residual of the rounding doing in 
effect linear interpolation. The derivatives have to be 
themselves warped by the rounded flow as well so that 



they follow the pixel which they are supposed to cerrect. 
The MediaMath [ I  I] code is shown in Fig. I.* 

It is easy to see that this can be extended to second order 
interpolation if the results are not satisfactory by comput- 
ing the second order derivatives and multiplying them by 
second degree monomials of du  and dv. The results 
using the second order interpolation were only slightly 
better than the linear one and third order were vitualy 
indistinguishable from the second order. 

5. Animating the morphing 

To produce the morphing we need the displacements 
from image one to image two and from image two to 
image one. Then we calculate the intermediate images 
deforming both images towards each other, so that they 
"meet" in between and we take a weighted average (cross 
dissolve). By varying the weights and the amount of 
deformation we can create a smooth transition from one 
image to the next. The MediaMath code is shown in Fig. 
* 

function linwarp-fimg(im, u, v) 
"Warps the image using linear interpolation " 
I 
local im12, iml2-x, iml2j, ru, rv, du, dv; 

/ *  Integer warp the image */ 
im12 = intwarp-fimg(im, ru=round-fimg(u) , 

rv=round- fimg (v) ) ; 
/*anditsderivatives */ 

iml2-x = intwarp-fimg(D-x(im), ru, rv) ; 
im12-y = intwarp-fimg(D_y(im), ru, rv) ; 
du = u - ru; 
dv = v - rv; 

/ *  add the derivative times the */ 
/ *  residual of the rounding */ 

im12 += iml2_x*du; 
im12 += iml2_y*dv; 
im12; / *  return im12 */ 

1 ;  

Fig. 1. Mediamath code for warping using linear interpo- 
lation. 

6. Results 

We used the algorithm to morph the images of vari- 
ous people. The image sequences could be viewed using 
MediaMath and xv (about one image every three seconds) 
or on an SGI using moviemaker/movieplayer. Nine of the 
frames are shown on Fig. 3. For comparison we show the 
result of the fifth frame using Horn and Schunck algo- 
rithm [7] in Fig. 4. The results with the Gabor-affine algo- 
rithm are much better. 

7. Conclusions 

uv=Gb-A-flow(iml,im2, :sig=O.O, :lam=lO.O, 
:maxits=lO, 
:solver= 'ConGrad, 

:scls = 3, 
:scll = 0.7, 
:w-sgrod = 3.0, 
: oriens=4) ; 

uv-i=Gb-A-flow(im2, iml, :sig=O. 0, :lam=lO. 0, 

xv = spawn ( "xv" , "morph " ) ; 

for (i=l; ic=lO; i++) 
I 
local ru, rv, du, dv, uv-s, uv-si, temp; 

uv-s = uv*(i/lO.O); 
uv-si= uv-i*((10-i)/lO. 0); 

im12 = linwarp-fimg(im2, uv-s->u, uv-s->v); 
im12 *= (10-i)/10.0; 
temp = linwarp-fimg(im1, uv-si->u, uv-si->v) ; 
temp *= i/10.0; 
im12 += temp; 

wri te-img(iml2, "morph", :rescale=nil) ; 
sleep(1); 
kill (xv, SIGQUIT) ; 
sleep(1); 

1 ;  

Fig. 2. The MediaMath code to animate the morphing us- 
ing xv. 

We presented an approach to morphing that does not Fig. 3. Nine images of one young male morphing into an- 
require a human operator by using flow techniques from 

other. 
computer vision. We plan to extend the approach to mov- 
ing images and introduce a simple way for the operator to 
guide the flow algorithm in cases that the images have 
parts that are extremely different. 

MedinMnlh syntnx is very similar to C 



Fig 4. The fifth image using Horn and Schunck algo- 
rithm. 
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