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ABSTRACT 

Image defects and their effects on drawing analysis algo- 
rithms are investigated in this work. To study general draw- 
ing analysis systems, we use unconstrained, well-behaved 
random polygons as test inputs. We generate synthetic 
noisy samples through the use of image defect models. Im- 
age analysis algorithms are then applied t o  these samples, 
and the results are empirically evaluated by matching them 
against a ground truth. Discrepancies are regarded as im- 
age analysis errors and categorized. The relationship be- 
tween image defects and an algorithm's error behavior can 
then be analyzed. Our study has applications in the devel- 
opment of robust and reliable document image understand- 
ing systems. 

INTRODUCTION 

Image defects and their effects on drawing analysis algo- 
rithms are investigated in this work. Line drawing under- 
standing is an important application area in machine vision 
research [3]. Drawing analysis algorithms are being used to  
solve a wide range of practical problems, e.g., map under- 
standing, CAD drawing conversion, scientific diagram anal- 
ysis, etc. In this paper we are mainly concerned with the 
performance evaluation of line extraction algorithms. In 
the past, Ramesh and Haralick [8] have studied the prob- 
lem of evaluating the performance of computer vision algo- 
rithms. However, to  derive analytical formulae, they must 
make simplifying assumptions both for the noise models 
and for the image analysis algorithms. In our work, image 
analysis algorithms are empirically evaluated by matching 
their output with the ground truth. 

Figure 1 depicts the overall structure of our work. The 
three chief building blocks - synthetic image generation, 
drawing analysis systems, and performance evaluation - are 
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Figure 1: Overview of the paper. 

each side has moderate length, 
no intersections except at  end points, and 
no angles are too sharp or obtuse. 

These constraints are designed to  eliminate line extraction 
errors caused by inappropriate (i.e., unrealistic) inputs. 

Document image defect models are then applied to gen- 
erate synthetic images. Image defect models have been in- 
vestigated previously [I ,  51. The goals are to build more 
robust OCR systems [I], and to  study defects for a specific 
imaging system, i.e., photocopiers [5]. In this work we use a 
simplified version of Baird's model [I]. We consider effects 
such as ink spread, image blur, and speckle noise. 

The spreading of ink is modeled as degradation that 
changes a white pixel to  black according to  a probabil- 
ity P depending on the white pixel's distance d from 
the nearest black pixel. 

described in the following three sections. We then present P = pie-" 
experimental results and our conclusions in the last two 

(1) 

sections. where Pi is a constant. 

Speckle noise randomly turns white pixels into black 

SYNTHETIC IMAGE GENERATION pixels with a uniform probability P. (i.e., the distribu- 
tion is Poisson). 

To study general drawing analysis systems, we propose to 
The defocusing effect induced by a scanner is modeled 

use unconstrained, well-behaved random polygons as test 
by a 3 x 3 averaging operation. Other more compli- 

inputs. We have developed a program to  automatically 
cated alternatives include morphology operations and 

generate such polygons. Our criteria for "well-behaved" low-pass filters. 
are 



Hence, our image defect model is parameterized by two 
probabilities: Pi and P,. A recent paper investigates the 
validation of image defect models for OCR systems [7]. The 
same concept can be applied to  drawing analysis systems 
as well. In our work, we shall use real image samples to 
"calibrate" the defect model parameters, and then use the 
model to generate a large number of synthetic samples to 
investigate an image analysis system's behavior. We plan 
to address the validation problem in a future work. 

DRAWING ANALYSIS SYSTEMS 

To extract lines from a blurred and noisy image, two dis- 
tinct procedures are involved: thinning and linking 19). 
In the first step, the "skeletonsn of image objects are ex- 
tracted. We have tested the following two different ap- 
proaches to image thinning: 

Medial axis transform of a binary image. To extract 
lines, an image is first binarized with a pre-defined 
threshold. The threshold value is set relatively low 
to avoid the fragmentation of lines. A skeleton image 
is then extracted from the bitmap by the medial axis 
transform [6]. 

a Watershed transform of a gray-level image. Skeletons 
can also be directly obtained from a gray-level image 
by the watershed transform. This procedure can be 
found in the Khoros package [6]. 

Two public domain image analysis packages, the Object 
Recognition Toolkit ( O R T )  [2] and Khoros [6], are used for 
edge linking. Both systems are capable of extracting poly- 
gons from bitmap images, although they employ slightly 
different approaches. 

ORT extracts straight lines and curves from edge pix- 
els by linking connected pixels and segmenting them into 
lines and curves. Four major steps are involved: chaining, 
segmentation, linking, and classification. In the beginning, 
edge pixels are first chained into linked lists. Chained sets 
are broken into subsets which are near-symmetric about 
the mid-point of the subset. Two adjacent segments are 
then linked together if they have similar curvature. The 
linked segments are finally classified as straight lines or cir- 
cular arcs b a e d  on the distance from the mid-point of the 
subset to the straight line joining the two end points. 

On the other hand, the vpolygon function in Khoros cre- 
ates a vector image resulting from a polygonal approxima- 
tion of an edge image. The least square method is used to 
fit straight lines to  connected edge pixels. The fitting fails 
if the variance of the least square estimation is greater than 
a pre-defined threshold; a linked set is broken into subsets, 
which will then be fitted by shorter lines. The polygonal ap- 
proximation process stops when all edge pixels are grouped 
into line segments. However, segments shorter than a pre- 
defined threshold are rejected as noise. 

PERFORMANCE EVALUATION 

The main contribution of this work is in the empirical eval- 
uation of image analysis algorithms. The evaluation is per- 
formed by matching analysis results with a ground truth. 

This problem differs from traditional 2-D line matching be- 
cause line splitting is an important concern for extraction 
algorithms and thus needs to be evaluated explicitly. We 
now describe our approach to  the problem. 

ERRORS AND COSTS 

In the matching process, we consider the following four 
types of possible image analysis errors: 

a Deletion: a feature is missed. 

Insertion: an extraneous feature is detected. 

a Merge: two features are merged into one. 

a Split: a single feature is split into two. 

Costs are defined for each type of hypothesis, including 
a match hypothesis, as follows: 

Deletion cost = length of line deleted. 

Insertion cost G length of line inserted. 

Merge cost G midpoint-to-line distance + orientation 
difference, as Figure 2 illustrates. The line in the first 
image must be shorter than the line in the second im- 
age. To make the angular difference compatible with 
the point distance, the former is multiplied by a scale 
factor set between 100 and 200, as the range of point 
positions is 512 (the image dimension) and the range 
of orientations is T .  

Split cost G line-to-midpoint distance + orientation 
difference. In the current implementation, the split 
and merge costs are symmetric. 

Match cost = sum of distances between the two pairs 
of matched end points + orientation difference, as Fig- 
ure 3 illustrates. 

Figure 2: Cost for merging one line into another. 

Figure 3: Cost for matching two lines. 



HYPOTHESIS GENERATION 

The matching process first finds all the neighbors for a line. 
It then generates matching, merging, and splitting hypothe- 
ses between all possible pairs of lines. 

r Finding adjacencies: two lines are considered neigh- 
bors if the distance between their end points is below 
a threshold, as Figure 4 illustrates. 

Constructing hypotheses: a match, merge, or split hy- 
pothesis is generated for two lines in the two images if 
the cost is below a threshold value. The initial strength 
is then defined as strength = 1.0/(1.0 + cost). 

Figure 4: Definition of adjacent lines. 

Note that the strength of a hypothesis can be interpreted 
as its probability. However, in our current implementation 
such a rigorous interpretation is not necessary. 

Figure 5 serves as an example to  illustrate this. The set 
of initial match hypotheses might look something like the 
following: 

line-a is deleted. 
r line-a is matched with line-A. 
r line-b is deleted. 
r line-b is merged into line-B. 
r line-c is deleted. 
r line-c is matched with line-B. 

line-c is merged into line-B. pFl 
b B  

Figure 5: Example to illustrate hypothesis generation. 

MATCHING BY PROBABILISTIC 
RELAXATION 

The goal of the matching algorithm is to find the set of 
globally consistent hypotheses that has the minimal overall 
cost. Because of the combinatorial nature of the problem, 
exhaustive enumeration of all possible matching hypothe- 
ses would be much too inefficient. A popular approach for 
addressing such problems is to use a relaxation methodol- 
ogy. For our work, we implemented a modified version of 
the line drawing interpretation system proposed by Hori, 
et al. [4]. The main advantage of such an approach is its 
simplicity; only local information is used in the iterative 
optimization. 

After hypothesis initialization, the strength of each 
match hypothesis is updated iteratively by the following 
process: 

1. For each line, examine all of its hypotheses and collect 
support and competition evidence from its neighbors. 
The strength of a hypothesis is then updated based on 
the evidence, using the equation: 

strength r (1.0 + support) 
new-strength = 

(1.0 + competition) (2) 

2. For each line, sort its hypotheses according to their 
strengths. Normalize the sum of their strengths to 1.0. 
Eliminate the weak hypotheses if their strengths drop 
below a pre-defined threshold value. 

For our experiments, we iterate five times, but usually 
the winning hypotheses emerge after just two or three iter- 
ations. The success of the algorithm depends on how the 
support and competition functions are defined. We discuss 
these below. 

r Support is used to  increase the strengths of hypotheses 
that are consistent with their neighbors' hypotheses. 
The total support function is defined as the sum of the 
strengths of all support hypotheses: 

total  upp port = strength(supporthypothesis) 

(3) 

1. Match. A match hypothesis is supported if it, to- 
gether with a neighbor's match hypothesis, pre- 
serve the angle relation between the two adjacent 
lines. Two angles are considered the same if their 
difference is less than a threshold. 

2. Merge. A merge hypothesis is supported if a 
neighbor is merged or matched to the same line 
in the other image. 

3. Split. A split hypothesis is supported if a neigh- 
bor of the line in the other image is also split from 
the same line. 

The support function is summarized in Table 1. En- 
tries in the table indicate conditions under which a 
hypothesis is supported. 

Table 1: Neighborhood support function. 

Neighbor's 
Hypothesis 

Competition is used to avoid many-to-one matchings. 
When the competition evidence is collected from neigh- 
bors, only their strongest are considered. The total 
evidence is defined as the sum of the strengths of all 
competition hypotheses: 

Current Hypothesis 
Match 1 Merge I Split 

totaliompete = strength(compete_hypothesis) 

(4) 

the same line 

the same line 



1. Match. A match hypothesis competes with any 
other split or match hypothesis that uses the same 
line in the other image. 

2. Merge. A merge hypothesis competes with any 
other split hypothesis that uses the same line in 
the other image. 

3. Split. A split hypothesis competes with any other 
merge or match hypothesis that uses the same line 
in the other image. 

The competition function is summarized in Table 2. A 
''T mark in the table means that the two hypotheses 
are competing with each other if they use the same line 
in the other image. 

Neighbor's Current Hypothesis 
Hypothesis Match ( Merge 1 Split 

Table 2: Neighborhood competition function. 

EXPERIMENTAL RESULTS 

We have evaluated the two thinning algorithms and the 
two line extraction algorithms using 100 synthetic images 
under six different noise conditions. For medial axis trans- 
form thinning, Table 3 presents our results, while Table 4 
presents our results for watershed transform thinning. The 
original number of lines in all the experiments was 4,396. 
In the tables, "I" stands for insertion, and "S" is for split. 
In our present set of experiments we did not encounter the 

Table 3: Results for medial axis transform thinning. 

Errors 
I I S System 

other types of errors. The noise parameters were defined 
as Pi = 0.01 * K, and P, = 0.001 * K. As noted earlier, Table 4: Results for watershed thinning. 

3 x 3 averaging was used to generate the defocusing effect 
in these experiments. For thresholds and other parameters, 
we used the default values provided by ORT and Khoros. 
Finally, Figure 6 gives a plot of the line detection accuracy 
versus noise. Fkom these tables and figures we can make 
the following observations: 

Most errors are line fragmentation errors, which are 
caused by the combination of blurring and thinning. 
Most insertion errors are due to small fragments that 
are too hard to  match to their original lines. 

Noise 
(K) 

Errors 
I ( S System 

In terms of line detection accuracy, the watershed 
transform gives better results than the medial axis 

Detected 
Lines 

Detected 
Lines 

Noise 
(K) 

When the watershed transform is used for thinning, 0.2 
ORTis much better than Khoros. If the medial trans- 0.1 

Noise 

Correct 
Lines 

Correct 
Lines 
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transform. 

form is used, the situation is reversed. 0.0 T I 
0 1 2 3 4 5 

For medial-axis transform thinning and Khoros poly- 
gon extraction, the fine detection accuracy increases Figure 6: Accuracies for the four different thinninglline 
by 5% between K = 1 and K = 2. We suspect this extraction algorithms. 
is mainly due to the variations in thinning, and are 
currently investigating this anomaly. 



We also present aeveral examples from our experimenta. 
The first is for high noise ( K  = 5). Figure 7 shows the 
original random polygons, and the image after ink spread- 
ing and speckle noise has been added. Figure 8 displays 
the images after blurring, cleaning, and thresholding, and 
after thinning. Thinning is performed by the medial axis 
transform [6]. Finally, Figure 9 presents the image analysis 
results from both ORTand Khoma. The extracted lines are 
then matched to  the ground truth data, and the discrepan- 
cies are regarded as image analysis errors. For comparison, 
Figure 10 shows the analysis results for lower noise ( K =  1). 
Figure 11 gives a magnified view of the image thinning re- 
sults for the watershed transform. Figure 12 shows the lines 
extracted by ORT and Khoms under high noise conditions, 
and Figures 13 shows the extraction results under low noise. 

I I 

ORT Khoms 

Figure 10: ORT and Khoms results under low noise. 

Figure 7: Original and high noise images. 
Figure 11: Watershed transform thinning. 
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Figure 8: Binarized and thinned images. Figure 12: ORT and Khoms results under high noise. 
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Figure 9: ORT and Khoms results under high noise. Figure 13: ORT and Khoms results under low noise. 



CONCLUSIONS [8] V. Ramesh and R. M. Haralick, "Random perturba- 

In this paper, we have investigated image defects and their 
effects on line drawing analysis algorithms. To study gen- 
eral drawing analysis systems, we used unconstrained, well- 
behaved random polygons as test inputs. We generated 
synthetic image samples through the use of image defect 
models. Two algorithms, the watershed transform and the 
medial axis transform, were used for image thinning. Two 
line extraction algorithms, ORT and Khoros, were then ap- 
plied to the synthetic samples, and the results were empir- 
ically evaluated by matching them against a ground truth. 
We regard discrepancies as image analysis errors, and clas- 
sify them as deletions, insertions, merges, and splits. Each 
error is assessed a cost, and a matching is determined using 
probabilistic relaxation. 

To evaluate line extraction results, we generated 100 syn- 
thetic images totaling more than 4,000 lines. We concluded 
that the watershed transform is better than the medial axis 
transform, and that ORT generally performs better than 
Khoros, but is sensitive to thinning errors. It is also clear 
from our experiments that image defects can have a sig- 
nificant effect on image analysis accuracy. A quantitative 
study of the relationship between image defects and im- 
age analysis results is therefore crucial to the development 
of robust and reliable document image understanding sys- 
tems. 
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