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ABSTRACT

A generalization of the first-order, local
least-squares optical How estimation algo-
rithm provides a basis for controlled compari-
son between the first- and second-order order
optical flow estimation methods. "T'he gener-
alization results from the fact that the first-
order method performs a computation that is
equivalent to that of the second-order method
when the inpnt is preprocessed to extract the
spatial gradient field and the local neighbor-
hood is reduced to a single point. Using the
new generalized framework, the relative per-
formance of the two methods is compared
through a series of experiments. ‘I'he experi-
ments reveal that both methods are system-
atically biased and that this bias can he re-
duced by low-pass filtering. 'I'he experiments
also reveal that the scecond-order-hased op-
tical flow estimates are generally much less
accurate than the first-order-based estimates,
and that this maccuracy is due primarily to
the fact that the second-order method em-
ploys significantly fewer motion constraints
per estimate than the first-order method.

1 INTRODUCTION

A large class of optical flow estimation
algorithms is based on partial derivative
estimates obtained by the use of finite-
differencing convolution kernels [1, 4, 7]. This
class can be further subdivided into those
methods that use first-order partial deriva-

tives and those that use second-order par-
tial derivatives. It has been claimed that
the second-order approach is more accurate
than the first-order approach because (1) a
unique flow can be determined at each point
without imposing extra constraints thus ob-
viating the need for neighborhood operations
that can blur the instantaneous flow values,
and (2) the underlying first-order constancy
constraint is not valid in general [7]. How-
ever, a recent empirical study found the first-
order method originally proposed by Lucas
and Kanade [5, 4] to be the best-performing
overall [1]. "This study compared the results
of nine different optical flow estimation tech-
nigues, including the second-order method,
for a suite of five synthetic and four real image
sequences.

T'he results of this study are not conclu-
sive, however. For instance, one difficulty in
evaluating the results of this study is that sev-
eral critical input image sequence properties
such as signal bandwidth, noise power, and
flow field properties were not controlled. Also,
since each of the candidate algorithms is sig-
nificantly different from the others, there is
no casy way to stucdy the effects of the vari-
ous algorithm parameters such as condition-
ing thresholds, and differencing and low-pass
kernels.

Thus, it appears to be unresolved whether
the first- or the second-order method is prefer-
able. Also, there does not appear to be any
clear information concerning the roles of the
various parameters that control these algo-
rithms. In an attempt to shed some light
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on these matters, a generalized algorithm has
heen developed that unifies the first- and
second-order methods. 'I'he performance of
this algorithm has heen tested extensively un-
der a variety of conditions. As a result, several
interesting and significant conclusions can he
drawn concerning the relative performance of
the first- and second-order methods. 'I'his pa-
per deseribes the imified algorithm, the exper-
iment methodology, and presents and cvalu-
ates a subset of the experiment results.

2 MOTION CONSTRAINTS

First-order Constraint: Let £ = F(x, 1)
denote the image intensity function, where x
is a two-dimensional veetor specifying a point
in the image and ¢ denotes time. Let v
[, v])" denote the instantaneous optical flow
value. The first-order constancy constraint is

d.‘
—‘L=VE'-V+H: :

dt ()

where VE = [E,, Ey]' is the intensity gradi-
ent relative to the image plane and snbseripts
denote partial derivatives,

It is well-known that (1) is not sufficient to
determine a unique flow value at each point
and so additional constraints are required.
One of the more successful approaches is to
obtain the additional constraints from a finite
neighborhood and to combine the constraints
by weighted, linear least-squares [5]. Specifi-
cally, the weighted local least-squares method
finds the v that minimizes

n

Y wi(VEY v+ £,

=1

where KU = F(x+Ax,, 1+ At,) and wy; is the
weight associated with constraint i. The pairs
(Ax;. At;) determine a neighborhood around
each point from which n first-order constancy
constraints are extracted. If the gradient is
non-zero and its direction varies sufficiently in
the neighborhood, then the resulting system
of equations is well-conditioned [4].

If F is vector- rather than scalar-valued,
for instance, if it is color, then cach vector
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component contributes a potentially indepen-
dent set of equations to the linear system. In
this case, the neighborhood can be reduced to
a single point, while still retaining a system of
sufficient rank.

Second-order Constraint: Starting from
the first-order constancy constraint, dF'/dt =
0, and taking the gradient of both sides yields

dE d s _
VW = EV!: + MVE=0,
where
M = [ e Vs ]
i‘.i'.y Uy

is the spatial variation of the flow field. If v
is spatially constant, then the above implies

iVE =:0.

di (2)

Fquation (2) is the second-order constancy
constraint and is the basis for the optical flow
estimation method that has been proposed by
Uras et al [6, 7). From (2) it quickly follows
that

d
H;;V: —éTtvE, (3)
where
HE = [ h:-."-.r Ej:;.':y ]
‘L’I‘!J ~yYy

is the Hessian of E.

If H . is non-singular, then v can be deter-
mined uniquely without any additional con-
straints. Because of this, it has been claimed
that the second-order constraint is preferable
to the under-determined first-order constraint
[7]. However, in practice, the accuracy and
stability of the second-order method seem to
fall short of that of the first-order, local least-
squares method [1].

There are several potential reasons why the
second-order method is less accurate in prac-
tice. One is that it is based on second deriva-
tive estimates, which are inherently less accu-
rate than first derivative estimates. A second
reason is that only two constraint equations
are used per flow estimate, rather than 9 or
more. Finally, it is not true in general that v
is spatially constant.



Unification: Suppose £ = YVF, where F
is a scalar-valued image intensity function.
Since F is vector-valued, it is possible to
apply the first-order least-squares estimation
method to E using the single-point neighbor-
hood. If the constraints of the two compo-
nents of &, F, and F,. are weighted equally,
the least-squares solution is the solution to

. d ..
Hiv=—Hp—VF. (4)
ot
The local least-squares method rejects all
points for which H}. is ill-conditioned. Hence,
it is safe to assume that Hy is non-singular.
Consequently, (4) is equivalent to

..

Hpv=—-_—VF.
ot

The above implies that the first-order, lo-
cal least-squares method, when applied to the
spatial gradient of an image and using the
single-point neighborhood. performs a com-
putation that is equivalent to that of the
second-order method. It also suggests that
it may he possible to blend the hest features
of the first- and second-order methods. In or-
der to achieve such a blending, it is necessary
to understand more thoronghly the strengths
and weaknesses of the two methods. There-
fore, some experimentation is required. 'I'he
new, unified algorithm is an excellent frame-
work for experimentation because it enables
controlled comparison between the two meth-
ods. In the next section, some preliminary
experimental results, based on this approach,
are presented.

3 EXPERIMENTS

The experiment methodology is as follows.
A synthetic two-dimensional image is gener-
ated by isotropically filtering a white Gaus-
sian noise field so that the resulting image
has a flat spectrum from zero up to 20% of
the Nyquist frequency and zero energy above
this cut-off. The image is then rotated about
its center by two degrees per frame to gen-
erate an image sequence. The resulting se-
quence (179 frames of 128 x 128 pixels cach)
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is then presented as input to the generalized
optical flow estimation algorithm. The mean
and standard deviation of the estimated ve-
locity magnitude and direction at each pixel
are gathered by integrating the results of pro-
cessing the entire sequence.

The local neighborhood for the first-order
method is the 3x 3 neighborhood generated by
the kernel [.25,.5, .25], while for the second-
order method it is the single-point neighbor-
hood. In both cases, the differencing ker-
nel is [—1, 8,0, -8, 1]/12 and the conditioning
threshold for the linear system is 20. (Flow
estimates for which the conditioning number
is greater than 20 are rejected.)

The performance of the first- and second-
order methods can be compared by exam-
ining Figure 1. The plots depict the flow
magnitude estimation bias and standard de-
viation for the first- and second-order meth-
ods as functions of the actual flow magni-
tude. Under these conditions, it appears that
the first-order method is more accurate than
the second-order method: it produces esti-
mates with slightly less bias and significantly
less variance than those of the second-order
method. In hoth cases, the bias is generally
positive for velocity magnitudes less than one
and negative for velocity magnitudes greater
than one. This is probably due to the non-
ideal response of the differencing kernel —
a phenomenon that has been described else-
where [3, 2]. The very high bias in the second-
order case at low velocities may be due to the
spatial variation of the velocity field near the
center of rotation. Repeating the experiment
with a reduced angular increment per frame
reduces this bias, and consequently supports
this hypothesis.

Nevertheless, the second-order method
does not appear to be very useful because of
the high variance in the resulting estimates.
The question is, what is the source of this
high variance and how can it be reduced? It
is unlikely that it is caused by spatial varia-
tion in the velocity field because the variance
is larger for points that are farther from the
center of rotation.

It is often stated that the input to
derivative-based optical flow estimation al-
gorithms must be “regularized” by low-pass
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Figure 1: The mean error and standard devi-
ation of the flow velocity magnitude estimates
are plotted as functions of the actual flow ve-
locity magnitude. The input is filtered white
Gaussian noise (see text). All quantities are
in units of pixels/franme.

filtering due to the ill-posedness of numeri-
cal differentiation. So, to determine the el-
fect of regularization on these estimates, the
first experiment is repeated, but with the in-
put sequence first low-pass filtered using an
isotropic 9 x 9 x 9 point Gaussian kernel (¢ =
1.5). The results are shown in Figure 2. I is
clear that the performance of both methods
has been improved by pre-filtering. In par-
ticular, the systematic bias has been greatly
reduced.

Additional experiments reveal that it is the
broad temporal support of the low-pass ker-
nel that contributes most significantly to the
improvement in accuracy. Since the flow field
for these experiments is constant with respect
to time, there is no penalty in using a low-pass
kernel with very broad temporal support. In
real applications, the temporal support of the
low-pass kernel is limited by the required tem-
poral resolution of the optical flow estimates.

Despite the dramatic accuracy improve-
ment resulting from low-pass filtering, the
variance resulting from the second-order
method is still unacceptably high and thus
apparently not directly due to a lack of reg-
ularization, but instead to other sources. I'or
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Iigure 2: The first experiment is repeated,
but with the input first low-pass filtered using
a9 x 9 x9 point Gaussian (o = 1.5).

instance, it is possible that the conditioning
threshold is set too high and that this is the
source of the high variance in the estimates re-
sulting from the second-order method. How-
ever, repeating the first experiment with the
conditioning threshold reduced to 10, and
then to 6, produces no significant change in
the results. The conditioning threshold can-
not be set any lower because the estimates be-
come too sparse to collect meaningful statis-
tics. Thus, it appears that the conditioning
threshold is not the source of the high vari-
arnce.

One significant difference between the two
methods, which was alluded to in Section 2,
is that the first-order method uses nine con-
straint equations (with the 3 x 3 neighbor-
hood) while the second-order method uses
only two. There is no intrinsic reason why
the second-order method cannot use a larger
neighborhood to overconstrain the flow and
thereby stabilize the estimates. To test the
effect of overconstraining the second-order-
based estimates, the first experiment is re-
peated, but with the local neighborhood for
least-squares estimation for the second-order
case set to the same 3 x 3 neighborhood as
that for the first-order case. The results are
shown in Figure 3.

It is evident from the data in Figure 3
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I'igure 3: The first experiment is repeated,
but in this case the local neighborhood for
least-squares estimation for the second-order
case is the same as that for the first-order case
(3 x 3).

that overconstraining the second-order-hased
estimates significantly improves their accu-
racy. The bias has been reduced slightly and
the viutance has been reduced signilicantly.
In fact, the performance of the second-order
method is close to, but not quite as good as,
that of the first-order method in this case.
These data tend to undermine the supposed
advantage of the second-order method of be-
ing able to evaluate the optical flow at a
point, without additional information, since
the resulting estimates are highly inaccurate,
mostly because the estimates are based on
minimal information.

In the experiments described above, the in-
put is essentially noise-free, except for a small
amount due to interpolation. The noise-free
condition is very useful in identifying system-
atic error sources in the two methods. Never-
theless, it is vital to compare the relative per-
formance of the two methods in the presence
noise. When the first experiment is repeated
with white noise added to the input, the es-
timates resulting from both methods are ex-
tremely inaccurate, both in teris of bias and
variance. However, if the input is low-pass
filtered, as in the second experiment, then
both methods appear to be relatively noise-
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Figure 4: The second experiment is repeated,
but with white noise added to the input

(SNR = 13).

tolerant.

Iigure 4 depicts the case where the input
is corrupted by additive white noise (SNR =
13), and then low-pass filtered prior to opti-
cal flow estimation. Under these conditions,
the estimation bias resulting from the two
methods is unaffected, but the variance is in-
creased, as one would expect. It is interesting
to note that the change in variance with addi-
tive white noise increases with velocity mag-
nitude. That is, higher velocity estimates are
relatively less reliable in the presence of noise
than lower velocity estimates. Finally, neither
method appears to be more or less sensitive to
noise than the other, provided that low-pass
filtering is performed as a preprocessing step.

4 CONCLUSIONS

In summary, a new unification of first- and
second-order derivative-based optical flow es-
timation provides a framework for controlled
comparison of the two methods. The experi-
ments reported here reveal that both methods
are systematically biased and that this bias
can be reduced by low-pass filtering. The ex-
periments also reveal that the second-order-
based optical flow estimates are generally
much less accurate than the first-order-based
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estimates, and that this inaccuracy is due
primarily to the fact that the second-order
method employs only two motion constraints
per estimate while the first-order method gen-
erally employs nine or more constraints per
estimate. When the number of constraints
employed by the second-order method is in-
creased, by increasing the local, least-squares
neighborhood, its accuracy improves and ap-
proaches that of the first-order method. How-
ever, in none of the experiments described
here has the second-order method been as ac-
curate as the first-order method.

More experiments are needed (o com-
pletely determine the conditions under which
the first- or the second-order method is prefer-
able. In particular, it is necessary Lo exani-
ine the roles of the other algorithm parame-
ters. Also, it 1s very important to exaimine
more closely the claim that the second-order
method is immune to violations in the first-
order constancy constraint. Within the ex-
perimental (ramework described here, it ap-
pears to be a simple matter to generate more
realistic sequences where this assumption is
violated. TFor instance, oblique views with
thine-varying dlunnnation can be simulated so
as to test this claim. In any event, the unified
first- and second-order optical flow algorithm
is an excellent basis for future experimenta-
tion and application.
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