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ABSTRACT 

11 geiicralizat~ion of' t.hc first-orclcr, 1oca.l 
least-squares opt,ical flow cst.imatiol\ a.lgo- 
rit,hm provides a, hasis for controlleel coml~a.ri- 
son brt.wecn t,hc first,- anel sccoiiil-orilcr order 
opt,ical flow cst,imatioii mcthoils. 'I'lic g('11cr- 
aliza.tion rcsult,~ from t,he fact that. t,hc first,- 
orcler iiiet.liod performs a compi~tat.ion t.1ia.t is 
ccll~ivalciit, t.o t1ia.t of t8hc sccond-orclcr mc.t.liocl 
when t lic inp11t is prcproccsscc-1 to cstract the 
sl)at.ial gradient, ficlcl ancl t,hc local nc~iglil~or- 
hood is reilncecl to  a. single point. [lsing t,lic 
I ~ P I I ~  gc~iicralizccl framcmorlr, tlit. rclativc. per- 
formance of the two mctliorls is coml,a.red 
through a scrics of csprrimcnts. 'I'hc rspcri- 
ments rcvea.1 t,liat hot,Ii mctliods are syst,cm- 
at.ically biased ancl t,hat this hias can I,c re- 
cll~cecl hy low-pass filtering. 'I'lic cspcrimc1it.s 
also rcvcal that  t,hc scconil-or(-lcr- hascil 01'- 
tical flow est,imatcs arc gcuc?rally much less 
accurat,c than t.he first,-order-I)asecl cstimat.cs, 
ancl that, t,liis ina.ccurxcy is clue primarily t,o 
t.he fact, t1ia.t t,he seconrl-orcler mct.liocl cm- 
ploys significa.nt.ly fewer mot.ion consttra.intjs 
per cstimatc than the first-orclcr rncthoc-I. 

1 INTRODUCTION 

A large class of optical flow estimation 
algorithms is hasccl on partial dcrivativc 
estimates obtainccl hy the 11sc of finite- 
cliffercncing convolution Iicrncls [ I ,  4, 71. 'l'liis 
class can be filrtlier s~~htliviclccl into those 
methocls that  usc first-orclcr partial clcriva- 

t,ivcs ai1iI those t,ha.t use second-order par- 
t,ial dcrivativcs. It has been claimed that  
t.lic scconc-I-order a.pproach is more accurate 
t , l~an thc first.-ortlcr a.pproach because (1) a 
~inicli~t? flow can be dctormined a t  each point 
wit,liout i~iilv.xing cst,ra. constraints thus ob- 
viating t,hc ncctl for neighborhood operations 
t,liat ca.11 hlur the ii i~t~antaneous flow values, 
ancl ( 2 )  tlic ~lndcrlying first,-order constancy 
constraint is not, valicl in general [7]. How- 
c ~ c r ,  a rcccwt empirical st ,~ldy found the first- 
order mc~tlioil originally proposed by Lucas 
and lianaclo [5, 41 to  he the best-performing 
overall [ I ] .  'I'his study compared the results 
of nine different. opt,ica,l flow estimation tech- 
niclucs, incll~iling t,he second-order method, 
for a, s i~ i t~c  of five syntliet,ic and four real image 
sequences. 

'L'lie rcsult.s of this stllcly a.re not conclu- 
sive, 1iowcvc:r. For inst,ance, one difficulty in 
cvnlua.t.ing t,lic: results of this study is that  sev- 
cra.1 critical i np l~ t  ima,ge sequence properties 
slicli as signal bandwidth, noise power, and 
flow field properties were not controlled. Also, 
since ca.cli of the ca.ni1iclate algorithms is sig- 
11ifica.nt~ly rliffcrcnt from the others, there is 
no easy way t,o stucly the effects of the vari- 
ous aIgorit,llm parameters such as condition- 
ing tlhrcsliolels, a.nd differencing and low-pass 
kernels. 

'Fhus, it. appears t o  be unresolved whether 
t.hc first,- or t,hc scconcl-order method is prefer- 
a.l)lc. Also, taliere does not appear t o  bc any 
clcar informa.t,ion concerning the roles of the 
vnriolis parameters t,ha.t control these algo- 
rit.lims. I11 a.n attempt t o  shed some light 



on t,licsc mat,t,crs, a g~~ic~ralizcil  algorithm lias 
hccn ilcvclopctl t,liat. iinifics the first- anil 
scconil-orilcr mr t  lioils. 'I'lic ~>c.rformancc. of 
this algorithm lias I > ( ~ . i i  tcstc'il cs tcns i~r ly  1111- 
clcr a \;aricty ofconclitions. As a rrsiilt, srvrral 
intcrcsting ancl significant concl~isions can hc 
ilrawn concerning t,hc rrla t,i\:c ~ > ~ ~ . f o r ~ i i a i i c t ~  of 
tlie first.- ancl seconrl-orilcr mct81ioils. 'I'liis pa- 
per clrscriI>cs t,hc ~~nificil  algorithm, tlic rspcr- 
imcnt mct lioclolog!;, ant-l l>rc~sc~iits and rva 111- 
at.es a s ~ ]  hsct of the czt~~criiiic~nt rcsiilts. 

2 MOTION CONSTRAINTS 

First-ordcr Constraint: 1,ct E,' = E,'(x, t )  
clenotc the image intensity fil~ictioii, w h t ~ c  x 
is a ti~ro-dii~icnsioiial vrctor specifying a point 
in the image ancl t tlcnotcs time. I,ct v = 
[u , t~ ] '  tlcnotc tlic iiistantanco~ls optical flow 
~ a l n e .  'I'hc first-order constancy constraint is 

tvlicrc VF; = [I?,, E;y]' is the intensity gratli- 
cnt relative to  tlic image plane ancl s~iI>scril>ts 
tlcnotr partial derivativc~. 

It is well-known that  ( I )  is not siifficici~t to  
clcterminc a unicll~c flow \~alilc at eacli point 
and so atltlitional constraints avc rccl~~ircd. 
One of the morc s~lcccssfi~l approaclics is to  
obtain tlic atltlitio~ial constraints from a finite 
neiglihorhood antl t o  comhinc the constraints 
I)!; \~rciglitccl, linrar I ~ a s t - s t ~ ~ i a r ~ ~  [s]. Sl~ecifi- 
cally, tlie ~o~zghtcd loco1 lea.st-sqtraws ~r,rtIiod 
finds the v tliat minimizes 

tvlierc E ( ' )  = E;(x+ilx,, t + A t , )  anil is t,hc 
weight associat.ecl wit.11 coiist,raiiit. i .  'l'hc pairs 
(Ax;. At;) clet.erminc a ncighl,orlioocl aroi~ncl 
cacli point, from which 11 first-orclcr constancy 
const~raint,~ are cst,ract,ccl. If t,lic graclicnt, is 
lion-zc~o ancl it,s clircct,ion varirs sufficicnt,ly in 
t lie nciglihorlioocl, t,Iicn t,hc 1.cs11 ltiiig syst,cm 
of cqi~atioiis is well-conilit,ioiicil [4]. 

If E is vcct,or- rat.lier t,lian scalar-valuccl, 
for instance, if it is color, tlicii cacli 17cct~or 

component contributes a potentially indepen- 
ilcnt set of equations to  the linear system. In 
tliis cast., tlic nciglil>orliootl can be reduced t o  
a single point, while still retaining a system of 
silfficient rank. 

Scconrl-orclcr Constraint: Starting from 
t.hc first.-order const,ancy constraint,, dE/dt  = 
0, an(-l tal<iiig t,lic gradient of bot,li sides yields 

is tlic spatial variation of the flow field. If v 
is spatially constant, then tlie above implies 

b:tluation (2)  is the second-order constancy 
constraint ancl is tlie hasis for the optical flow 
estimation mcthod that  has been proposed by 
llras ct al [(j, 71. From (2) it quickly follows 
that  

is the Hessian of I.:. 
If HI;. is lion-singular, then v can be deter- 

minctl uniqucly wit.hout any adtlitional con- 
st,ra.int.s. Hccause of t,liis, i t  lias been claimed 
t,liat t,lic second-order constraint is preferable 
t.o t.hc 111irlcr-clct,crmiiicd first,-order constraint, 

[7]. Howevcr, in practice, the accuracy and 
st,a.bility of the second-order method seem to  
fall short of that. of t,hc first,-order, local least- 
squares mcthod [I] .  

There a.re several pot,ential reasons why the 
scconrl-orclcr mcthocl is less accurate in prac- 
t,ice. One is t,liat i t  is based on second deriva- 
tive cst,imat,cs, which are inlierent,ly less accu- 
rate than first derivat,ive estimates. A second 
reason is t,liat only t,wo constra,int equations 
are used per flow cst,imate, rather than 9 or 
more. Finally, i t  is not true in general that  v 
is spatially  constant^. 



Unification: Sul3posc k,' = Gk', wlicrc k' 
is a scalar-vall~cd imagc intcnhity frinction. 
Since LJ' is vector-\-al~ic~il, it is possihlt> to  
apply the first-orcler least-scluarcs cstimntion 
iiietliocl to  E using the single-point nciglihor- 
hoocl. If tlic constraints of the two cornpo- 
ncnts of E,', E',. anel ki. arc. ~vciglitc~tl c.cli~ally, 
the least-sq~iarcs solrition is tl~c. sol~ition to  

?'he local least-scluarcs method rcjccts all 
points for i~~liicli H:. is ill-conclitioncil. Hence, 
it is safe to assuiiic tliat HI., is lion-sing~ilar. 
Consc.q~iently, (4) is ccluivalent to 

The above implies tliat tlie first-orilcr, lo- 
cal least-squares mctliotl, wlicn applictl to  thc 
spatial gradient of an iii~agc allel lising tlie 
single-point ~iciglihorliootl, pc~rforms a com- 
putation tliat is equivalent to tliat of the 
second-ordcr metliocl. It also s~iggcsts tliat 
it may he possihlc to  I,lend the hcst fcati~res 
of the first- ancl scconcl-orclcr mctliotls. I i i  or- 
der to  achieve sr~cli a I~lentliiig, it is necessary 
to  unclerstand more tliororiglily t lie strcngt,lis 
and meakncsscs of the tivo mctliotls. 'I'hcre- 
fore, some experimentation is reclriircil. 'L'lic 
new, unifiecl algorithm 1s an exccllciit frame- 
work for experimentatioii I,ccal~sc it enables 
controlled comparison hetween thc two meth- 
ods. In the next section, some preliminary 
csperiiiiental results, based on this approach, 
are presented. 

3 EXPERIMENTS 

The experiment mctlioclology is as follows. 
A syiitlictic two-tlinicnsional imagc is gc.ncr- 
ated hy isotropically filtering a white C7arls- 
sian noise field so that tlie rcsl~ltiiig image 
has a flat spectrum from zero lip to 20% of 
tlie Nyquist frequency ant1 zero energy al,ove 
this cut-off. Tlie imagc is then rotatccl ahout, 
its center by two tlegrccs per frame to gen- 
erate an image sequence. 'I'lic resiilting se- 
quence (179 f ra~ues  of 128 x 128 pixels each) 

is t.hcn ~wcscnt,cd as input to  t.he generalized 
opt,icaI flow cst,iii~a.t.ion algorithm. The  mean 
and st~anilarcl cleviation of the estimated ve- 
1ocit.y mngiitllcle a i d  clirection a t  each pixel 
arc gat,licrecl I,y int,cgra.t,ing t,he results of pro- 
cessing t,lic. entire seq~ieiice. 

'I'lic local neighborhood for the first-order 
mct~liocl is t,hc 3 x 3  ncigliborhood generated by 
t,hc kernel [.25, .5, ,251, while for the second- 
orclcr mct.liod it is the single-point neighbor- 
hoocl. In hot.11 cases, t,he differencing ker- 
nel is [ -1,8,0,  -8, 11/12 and the conditioning 
t,lircsliold for t.he 1inea.r system is 20. (Flow 
c~st.ima.t,cs for which tlie conditioning number 
is grea.ter t1ia.n 20 are rejected.) 

The performance of the first- and second- 
order mct.lioils can be compared by exam- 
ining Figure 1. The plots depict the flow 
magnit,udc estimation bias and standard de- 
viation for tlie first- and second-order meth- 
ods a.s fiinct.ions of the actual flow magni- 
t,ude. Under these conditions, it appears that  
t,lie first,-order met,hocl is more accurate than 
t,hc second-orcler mcthod: it produces esti- 
rnat,es wit,li slightly less bias and significantly 
less variance t,lian t,llose of t,he second-order 
met,liocl. In hot,Ii cases, tlie bias is generally 
positive for vclocit,y magnitudes less than one 
and ncga.t,ive for velocit,y magnitudes greater 
t,lian one. 'I'liis is ~>roha.l)ly due to  tlie non- 
idca.1 response of t,he differencing kernel - 
a plicnomcnon t,ha.t has been described else- 
where [3,2].  Tlie very liigli bias in the second- 
order case a t  low velocities may be due to  the 
spa.tia.1 varia.t,ion of the velocity field near the 
cent,er of rot,a.t.ion. Repeating the experiment 
wit,h a, rccluced a n g ~ ~ l a r  increment per frame 
rccluccs t.liis bias, and consequently supports 
t,liis liypot.liesis. 

Ncvert,lielcss, the second-order method 
does not appear to  be very useful because of 
the liigli variance in t,lie resulting estimates. 
r 1 I lio cluest,ion is, what is the source of this 
liigli varia.ncc ancl how can it be reduced? It 
is unlikely t,liat it is caused by spatial varia- 
t,ion in the vclocity field because the variance 
is larger for points that are farther from the 
center of rot a t '  ion. 

It is often sta.ted that tlie input to 
deri~at~ivc-ba.sed opt.ical flow estima.tion al- 
gorithms must be "regularized" by low-pass 
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Figure 1: The  mean error and standard devi- 
ation of tlie flow velocity magnitude estimates 
are plotted as functions of t l ~ e  actual flow ve- 
locity magnitude. The  illput is filtered wllite 
Gaussian noise (see text). All q~an t i t~ i e s  are 
in units of pixels/franie. 

filtering due to  the ill-posedness of nu~neri- 
cal differentiation. So, to  determine tlie ef- 
fect of regularization on these est,imat,es, the 
first experiment is repeated, but with the in- 
put sequence first low-pass filtered using an 
isotropic 9 x 9 x 9 point Gaussian Iternel (u = 
1.5). The results are sllown in Figure 2. It is 
clear t.liat tlie performance of both ~netliods 
lins been improved by pre-filtering. In  par- 
ticular, the syst,emat,ic bias has been greatly 
reduced. 

Additional experiments reveal that it is the 
broad temporal support of the low-pass ker- 
nel that contributes most significantly to the 
improvement in accuracy. Since the flow field 
for these experiments is constant with respect 
to time, there is no pe~ialty in using a low-pass 
kernel with very broad temporal support. In 
real applications, the temporal support of the 
low-pass kernel is limited by the required tem- 
poral resolution of the optical flow estimates. 

Despite the dramatic accuracy improve- 
ment, resulting from low-pass f i l ter i~~g,  the 
variance resulting from the secotid-order 
method is still unacceptably high a l ~ d  thus 
apparently not directly due to ;t lack of reg- 
ularization, but instead to other sources. For 
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Figure 2: The  first experiment is repeated, 
but with the input, first low-pas filt,ered using 
a 9 x 9 x 9 point Gaussian (u = 1.5). 

instance, it is possible tliat t,he conditioning 
threshold is set too liigl~ and that. this is the 
source of the lligll variance i l l  tlie estil~lates re- 
sill t.i~ig from the second-order met.liod. Ilow- 
ever, repeatil~g the first experilnent with the 
conditioning threshold reduced to  10, and 
then to  6, produces no significant change in 
the res~llt,s. Tlie conditioning threshold can- 
not be set any lower because the estimates be- 
come too sparse to collect mea~~ingful  stat,is- 
tics. T l ~ u s ,  it appears that the conditioning 
threshold is not t,lie source of the liigl~ vari- 
ance. 

One significant difference between the two 
methods, which was alluded to in Section 2, 
is that the first-order method uses nine con- 
straint equations (with the 3 x 3 neighbor- 
hood) while the second-order ~netllod uses 
only two. There is no intrinsic reason wlly 
the second-order r ~ ~ e t h o d  cannot use a larger 
neighborhood to  overconstrain the flow and 
thereby stabilize (.he estin-~at~es. To test tlie 
effect of overconslraining the second-order- 
based estimates, t-he first experiment is re- 
peated, but with the local neighborhood for 
least-squares estill~ntion for the secoltd-order 
case set to  the same 3 x 3 neighborhood as 
tliat for the first-order case. Tlie results are 
shown in Figure 3. 

It  is evident f r o ~ r ~  the data  in Figure :1 
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Figure 3: The first experilllent is repeated, 
but in this case the local neighborhood for 
least-squares estimation for the second-order 
case is t,he same as that for the first-order case 
(3  x 3). 

that overconstraining the second-order-based 
estimates sigt~ificantly iniproves their accu- 
racy. The bins has been reduced sliglrbly a ~ l d  
l i l t  L;LI lalice h ~ t s  Lee11 reduced sigllifica~lbly. 
In fact, the performance of the second-order 
method is close to, but not quite as good as, 
that of the first-order method in this case. 
These data  tend to undermine the supposed 
advantage of the secotid-order tiiethod of be- 
ing able to evaluate the optical flow a t  a 
point, without additional information, since 
the resulting estimates are highly inaccurate, 
mostly because the estimates are based on 
minimal information. 

In the experiments described above, the in- 
put is essentially noise-free, except for a small 
amount due to interpolation. The noise-free 
condition is very useful in ident,ifyil~g system- 
atic error sources in the two methods. Never- 
theless, it is vital to  compare the relative per- 
formance of the t.wo methods in the presence 
noise. When the first. experiment is repeat,ed 
with white noise added to  the illput, the es- 
timates resulting from both methods are ex- 
t,remely inaccurate, both in terms of bias and 
variance. However, if the input is low-pass 
filtered, as in tlie second experiment, then 
both methods appear to be relatively noise- 
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Figure I :  Tlte secol~d experiment is repealed, 
but with white tloise added to the input 
(SNR = 13). 

tolerant. 
Figure 11 depicts tlle case where t l ~ e  input 

is corrupted by additive white ~ ~ o i s e  (SNR = 
13), and then low-pass filtered prior to opti- 
cal flow e~ t ima t~ io~ t .  U~rder tl~ese conditions, 
tile es t i l l~ ;~ l io l~  ])ins resultil~p, fro111 lllr two 
tnelllods is unaffected, hut the variallce is ill-  

crei~sed, as one would expect. It is i~~teresti~tg: 
to note that the clrange in variance with addi- 
tive white noise increases with velocit,y mag- 
nit ude. That  is, higlier velocity estitnates are 
relatively less reliable in the presence of noise 
than lower velocity estimates. Finally, neither 
nlethod appears to be more or less sensitive to 
noise than the other, provided that low-pass 
filtering is performed as a preprocessing step. 

4 CONCLUSIONS 

In summary, a new utiification of first- and 
second-order derivative-based optical flow es- 
timation provides a framework for cont.rolled 
comparison of the two tnethods. 'The experi- 
ments reported here reveal thal  both methods 
are syste~rlatically biased and that this bias 
can be reduced by low-pass filtering. The ex- 
periments also reveal that the seco~ld-order- 
based optical flow estimates are generally 
much less accurate t,ltar~ the first-order-based 



estill~ates, and 1.liat (.Itis inaccur;tcy is drre 
pritllarily lo tlle fact tllab t l ~ e  seco~ld-order 
~net~hod employs o~l ly  two ~llot,iol~ c o ~ ~ s t . r a i ~ ~ t s  
per estinlate while tlte first-order rlletl~od getl- 
erally employs nine or more collstraillbs per 
estimate. MThelt the nurnber of col~st~rainls 
elnployed by the secor~d-ortler ~ ~ ~ e t , l i o d  is ill- 
creased, by increasillg t . 1 ~  local, least,-squltres 
neigliborliood, its accuracy iti~proves and ap- 
proaches that of t,he first,-order metllod. How- 
ever, in none of t.he experime~its described 
here has the second-order method been as ac- 
curate as the first-order metllod. 

More esperilnents are ~ ~ e e d e d  to conl- 
pletely determine the conditions under wliicli 
the first- or tlie second-order l~ i e t l~od  is prefer- 
able. In particular, it is necessary to exalll- 
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