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ABSTRACT 

Image segmentation plays an important role for ma- 
chine vision applications. In this paper, we present a 
new segmentation strategy based on fuzzy clustering al- 
gorithm. The new algorithm includes the spatial interac- 
tions by assuming that the statistical model of 
segmented image regions is Gibbs Random Field ( GRF 
). We specitjl the neighborhood system, the associated 
cliques. and the potentials of the GRF. Then, we rede- 
fine the objective hnction of Fuzzy C-Means ( FCM ) 
clustering algorithm to include the energy function that 
is the sum of potentials. The modified membership equa- 
tion is derived. By including the modified membership 
equation in the modified FCM clustering algorithm, the 
segmentation is achieved. Experiment results show that 
the new algorithm yields better segmentation results. 
Moreover, it is faster than the conventional adaptive 
segmentation algorithm. 

I. INTRODUCTION 

Image segmentation plays an important role for ma- 
chine vision application. It aims to partition an image 
into a set of nonoverlapping regions whose union is the 
original image. The regions that appear the same would 
produce the corresponding features that are near to 
each other, whereas regions that appear different would 
produce the corresponding features that are far apart 
[I]. Consequently, the process of segmenting an image 
is equivalent to the process of grouping image samples 
with similar features into regions ( clusters ). Thus, it 
can be considered as a clustehng problem. 

Clustering is the process of partitioning a set of fea- 
ture vectors into clusters [2]. There are many clustering 
algorithms, each having its own peculiar characteristics. 
However, they can be roughly categorized into two 
board types : 1) "hard" clustering algorithm and 2) 
"soft" ( or "fuzzy" ) clustering algorithm. Most of the 
early works in image segmentation by clustering are 
based on the hard clustering algorithm. A well-known 
hard clustering algorithm is the K- Means algorithm [3] 
which will iterate to a local minimum for the squared er- 
rors ( distances ), from each sample to the nearest 
cluster center. However, detailed studies of the K-means 
have revealed the following two major problems : 

1 )  it assigns each pixel to one and~only one cluster 

during each iteration. However, the "all or none" mem- 
bership restriction is not realistic one. 

2) it doesn't include spatial constriants which is impor- 
tant to remove the isolated pixels. 
In order to solve the second problem above, an algo- 
rithm ( hereafter called the adaptive algorithm ) was re- 
cently proposed by Pappas [4]. This adaptive algorithm 
can be regarded as a generalization of K-means algo- 
rithm. It aims to contain the spatial constraints at the 
cost of expensive computational burden. 

The fuzzy clustering method assigns each training 
vector a set of membership values, one for each cluster, 
rather than assigning each training vector to one and 
only one cluster. Since it is more realistic, several re- 
search results have indicated that it is superior to the 
hard clustering algorithm. 

The most popular algorithm in the hzzy clustering is 
the Fuzzy C-Means ( FCM ) algorithm [S]. Our study 
indicated that FCM has a major problem : a large 
amount of storage requirement. In order to overcome 
this problem, we have developed a modified version of 
FCM ( hereafter called MFCM ) which uses a recursive 
procedure, rather than a batch procedure used in FCM, 
to update cluster centers [6]. We applied the MFCM to 
the image compression problem and demonstrated that it 
can reduce the storage significantly. 

In this work, we develop an image segmentation algo- 
rithm based on the MFCM clustering algorithm. The 
MFCM ( or FCM ) clusters each image pixel ( sample ) 
without the use of spatial constraints. To improve the 
segmentation, we modify the objective function of the 
FCM to include spatial constraints. We make use of the 
spatial constraints by assuming that the statistical model 
of image clusters is the Markov Random Field ( MRF ). 
The MRF has aroused wide attention in recent years, 
which has proven to be a powefil modeling tool in sev- 
eral aspects of image processing. This is due to the abil- 
ity of MRFs to model image joint distribution in terms 
of local spatial interactions, through their formulation as 
Gibbs distribution ( GD ). We employ the energy hnc- 
tion of the GD to modify the objective function of FCM. 
Then the modified membership equation is derived. 
Finally, the segmentation is achieved by including the 
modified membership equation in the MFCM clustering 
algorithm which uses an iterative procedure to find the 
optimal membership values and cluster centers. The pro- 
posed strategy then assigns each pixel to a cluster hav- 
ing the largest membership value. 



We compare the proposed strategy with K-means and 
the adaptive algorithm. Experiment results indicates that 
the performance is improved significantly. Moreover, it 
is faster than the adaptive algorithm. 

II.IMAGE MODEL 

In this section, we present a description of the as- 
sumed image model. All images are defined on a Mx N 
rectangular latticeL=( ( r , s ) :  I s r s M , I s s s N  } 
The observed gray scale image is y={y,,v}. A segrnenta- 
tion of the image y into region is denoted by XrS = i, 
where X,, take values in Q={ 1, 2, - - -, M ) .  M is the 
different region types ( or clusters ). Xm= i denotes that 
the pixel at ( r,s ) belongs to region i. For simplicity, .I", 
is used to denote that the pixel at location k belongs to 
region i. Thus a segmentation is simply a partition of the 
image y into M region types. Each region type can occur 
in more than one location within the image. 

We assume that the region process is a MRF with re- 
spect to a neighborhood system v ={vk : k E L), and then 
the conditional density is described in terms of the local 
characteristics 

P( . \ i l~~,  , all k # q )  

=P(.\iL\', . q E v k  ) (1) 

where vk is the neighborhood of pixel at location k. The 
neighborhood systems that are commonly used in image 
processing are and?'. v '  denotes the first-order 
neighborhood system consisting of the four nearest pix- 
els. q' means the second-order neighborhood system 
consisting of the eight nearest pixels. In this paper, the 
second order neighborhood system is adopted. Since a 
one-to-one correspondence exists between MRFs and 
GRFs [7], each region process can be respresented by 
its Gibbs Distribution ( GD) 

I 
P(X) = ;exp[-E(&, I (2) 

where 
b:(.V;) = 2 I ,Rc\;) 

X I E  8 (3 
B is a clique. 
Z is simply a normalizing constant. 
I &(.I;) = potential associated with clique B. 

 is called the energy function. A clique is a set of 
pixels that are neighbors of each other. The clique types 
associated with the first order and second order neigh- 
borhood system are shown in Fig. 1 respectively. In this 
paper, we assume that the only nonzero potentials are 
those associated with single pixel and two pixels cliques. 
The potential for two pixels clique is defined as 

0 , if Xk=Xq=i and k, q E B 
~i( , t : ) )={+~,  o*envise (4) 

where the parameter p influences the size and shapes of 
the resulting regions. For the single clique, the potential 
is defined as 

= a ,  ifXk= i fork E B ( 5 )  

where a, is a parameter associated with region i .  The 
parameter a ,  influences the relative likelihood of each 
region type. In this paper, we assume that all region 
types are equally likely. In other word, the parameter a ,  
equals to zero for all i. 

One would expect to obtain better segmentation re- 
sults by considering higher order neighborhood system 
and all associated clique types. However, this will in- 
crease the computational complexity significiantly. Ex- 
periment results indicated that our model captures the 
essential features of the region in an image and yields 
good segmented images. 

In this section, we first review the fuzzy objective 
function and point out its drawback. Then we describe 
how to modify the fuzzy objective function to solve this 
drawback. 
A. The Fuzzy Objective Function 

Let y = b ,  ,y,,--.y, ) be the observed grey scale image 
, and an integer C, 2 5 C I n  , be the number of clus- 
ters ( or regions ) The fuzzy clustering algorithm 

attempts to partition y into C fuzzy clusters, such that 
close elements in y will have similar segmentation ( 
membership value ) and dissimilar elements will have 
different segmentation. The clustering of a pixel y, 
depends on the membership vector u = 

Ip~@r) .  pd~k) ,  - - -, pccvt)lT ,where pICYk) ( denoted as 
pa for simplicity ), 1 I i 5 (' , indicate the degree of 
belonging of y, in the fuzzy region i. In order to 
achieve optimal clustering, we can define an objective 
function as 

The parameter m E [ I ,  m) is the weighting exponent; 
U= [ptk] is the membership matrix with dimension Cx 
n; V = (v,  ,v2 ,---,vc ) is a set of cluster centers; 
d,k = l b k  - vlll , where ))*II is any inner product norm 
metric, denotes the distance between yk and center v,. 
Ruspini [8] interprets the objective function, J,(U,V), as 
a clustering criterion and optimal fuzzy C-partitionings 
of y are taken as local minima of Jm( U ,V ). Since the 
membership values, p,p, are restricted by the following 
conditions : 

1 ) y  [O,11 
2 ) x p , k = l  , V k  

,=I 

One can uses Lagrange's method to solve this con- 
trained optimization, and then obtains 



These main results are contained in the FCM clustering 
algorithm which uses an iterative procedure to find the 
optimal sets of U and V. However, it is clearly that the 
objective function doesn't include spatial constraint 
component. This is the same drawback that the K-means 
algorithm has. In order to overcome this drawback, we 

attempt to modify the fuzzy objective function to con- 
tain the spatial constraints. 
B. The Modified Fumy Objective Function 

In this work, we will use the energy function to intro- 
duce the spatial constraints. The energy function EVT,) 
expressed in Eq.(3) is the sum of the local potential 
terms which consist of a linear combination of the self- 
information of the current pixel and the mutual informa- 
tion between this pixel and its neighbors. The smaller 
E&) is the more likely that the pixel X, belongs to re- 
gion i. Thus the spatial constraints of each pixel can be 
introduced through its associated energy function. 

By considering the energy function as a weighting 
component, we can define a weighting function as 

W , k  = (P~~)~ECY'~)  
= ( P . ) ~ & ~  VB (1:) (9) 

Referring to fuzzy objective function ( Eq.(6) ) and con- 
taining the weighting function term in Eq.(9), we obtain 

,- ~, 
This modified objective function simply adds the weight- 
ing component to the square distance between each pix- 
el and a region center; the squared distance is then 
weighted by the spatial constraints. 

Using the same solving technique described in Section 
III(A), we obtain the modified membership equation 

This main result will be included in the following modi- 
fied FCM clustering algorithm, and then the segmenta- 
tion is achieved. 

IV. ALGORITHM 

In this section, we use a modified version of FCM ( 
hereafter called the MFCM ) to reduce the storage 
requirement. The main idea behind the MFCM is that it 
uses a recursive procedure, rather than a batch proce- 
dure used in FCM, to update the cluster center. The 
segmentation is achieved by including the modified 
membership equation in the MFCM algorithm which 
uses an iterative procedure to find the optimal member- 
ship values and cluster centers. Then, it assigns each 
pixel to a cluster having the largest membership value. 
The algorithm is described as follow. 

The Algorithm 
(Al) Given an observed grey scale image y=@, ,y2 ,- - 
-,yn } where y, is a pixel at location k. Fix C . C 
E [2,n) ;fix m, mc [I ,-=) . 
Where 

C = the number of clusters . 
n = the number of pixels 
m = the weighting exponent. 

(A2) Fix the order of neighborhood system and the as- 
sociated clique potentials. 
(A3) Initialize the cluster centers v'o)={v~'; 1 5 i 5 C) 
.Let 1=0, k=l; clear a, and b, for 1 5 i 5 C . (A4) For 
each i, calculate the membership values v i k  using the 
modified membership equation ( 1  1)). The 
membership values are then stored into a temporary 
linear array p = [PI,  pz, - - -,PC]. 
(AS) For each i, calculate two intermediate parameters, 
a, and b, by 

(n (0 a, =a, +p:Xk (12) 
bj" bbj" +p: (13) 

(A6) Set k = k+l and return to ( A4 ) until all pixels ( 
k = n ) have been processed. Then, go to ( A7). 
(A7) For each i, update the cluster centers using a;'and 
b bj" 

,,(/+I) = 2 
I 

bjn (14) 
(A8) Compare v"+') to v("n 2-norm. If 
llv"+') - v(0)l< E the procedure stops and goes to 
(A9). Otherwise, set a,=O , b,=O , C 1+1, and go to 
(A4) for next iteration. 
(A9) Assign each pixel to a cluster having the largest 
membership value. 

In MFCM, only the membership values corresponding 
to one pixel are needed to be stored. Hence, the gain in 
memory saving is about equal to n, where n is the num- 
ber of all pixels. Furthermore, the MFCM achieves a 
better segmentation performance. The performance ad- 
vantage will be demonstrated in the experiment. 

V. EXPERIMENT RESULTS 

The performance of the proposed algorithm is evalu- 
ated on a PC486-50. Several natural images with 256 
grey levels are used. The segmentation is set to be 4 
clusters. The second order neighborhood system is 
adopted. The weighting exponent m is set to 1.5. We 
compare the proposed algorithm with the K-means algo- 
rithm, and the adaptive algorithm. The results of seg- 
mented image are presented in Fig.2. Fig.Z(b) shows the 
results of the K-means. A lot of isolated pixels on the 

wall and shadow regions ( e.g., upper right comer of 
the door ) are lost. Fig.Z(c) shows that the adaptive al- 
gorithm gives less isolated pixels. However, much of the 
shadow regions are still lost. The result of the proposed 
algorithm, shown in Fig.2(d), is obviously better than K- 
means and the adaptive algorithm. 

Table 1 compares the computation times of K-means, 
the adaptive algorithm, and the proposed algorithm. The 
results indicated that K-means is the fastest one. How- 



ever. the quality of segmented image processed by K- 
means is poor. It is reasonable because K-means uses no 
spatial constraints. The proposed algorithm is obviously 
faster than the adaptive algorithm. 

VI. CONCLUSIONS 

In this paper, we have presented a new strategy to 
segment an image, based on the MFCM clustering algo- 
rithm. In this strategy, a MRF is used to model the 
image. Then, the associated cliques and the associated 
potentials are used to form the energy function which is 
used to modify the fuzzy objective function. Hence, the 
modified objective function has two components. One 
measures the dissimilarity between pixels and cluster 
centers, and the other introduces the spatial constraints. 
Finally, a modified membership equation is included in 
the MFCM clustering algorithm, and each pixel is as- 
signed to a cluster having the highest membership value. 
Experiment results show that the new algorithm is 
clearly superior to K-means and the adaptive algorithm. 
Furthermore, it is faster than the adaptive algorithm. + o m 0  
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TABLE l 
Computation time for K-means, the adaptive 

algorithm, and the proposed algorithm 

Fig. 1 Clique types associated with first-order and 
second-order neighborhood system 

I 

Fig.2 Comparison of K-means, the adaptive algorithm and the proposed algorithm of 
"House" (a) Original image. (b) Segmented image of K-means. (c) Segmented image 
of the adaptive algorithm. (d) Segmented image of the proposed algorithm. 




