
MVA'94 IAPR Workshop on Machine Vision Applications Dec. 13-1 5, 1994. Kawasaki

A PROCEDURE FOR SEGMENTING
TOUCHING NUMBERS IN CADASTRAL MAPS

Gladys Monagan
Insti tut fiir Informationssysteme

Swiss Federal Institute of Technology (ETH)
ETH-Zentrum, CH-8092 Zurich, Switzerland

ABSTRACT
We present a procedure to split (or segment)
touching numerals. We are neither assuming
a dominant orientation for the text direction
nor long character strings. The basic idea is to
compute the convex hull of the outer contour,
to choose a baseline from one of the sides of
the convex hull and to project the pixels of the
touching characters (either perpendicularly or
at a slant). Lu's function is then used to try
to identify the splitting position. Other steps
are then undertaken to find the splitting po-
sition of the more difficult cases. We present
some results taken from touching numerals in
cadastral maps.

INTRODUCTION

Characters in a document touch each other
for such reasons as poor quality printers or be-
cause the characters were hand written that
way. In addition, characters in a scanned bi-
nary image can touch as a result of the bina-
rization process. Yet, very few optical char-
acter recognition (OCR) programs can recog-
nize touching characters and for this reason,
these touching characters must be segmented.
We devised this approach for splitting char-
acters from a need to recognize parcel num-
bers, building numbers, coordinate net num-
bers, and street names in cadastral maps.

PROBLEM AT HAND

We start with a binary image (at this point
in time we cannot obtain gray scaled images
because we work cadastral maps that are on
the average 700mm x 1100mm). After some

simple image processing, the connected com-
ponents are computed and these are rough-
ly divided into a class of graphic components
and a class of candidate symbols and char-
acters. We group the connected components
that could be characters and thus we obtain
the bitmaps that could corresponds to the
text entries. This is then the input to our
character recognition program.

The following points are particular to our
application of recognizing text in cadastral
maps, that which made it difficult for us to
take over a method for splitting characters
from the literature.

A text entry may have any orientation
and different text entries can have differ-
ent orientations (but within a text entry
the text direction is consistent).

Some text entries are short (2 or 3 char-
acters) whereas others consist of longer
numbers (like the coordinates of the net
numbers) or of several words (like the
street names).

If the text cannot be recognized with a
high certainty, it should not be recog-
nized a t all. We are dealing with cadas-
tral maps, i.e. legal documents, thus the
only types of errors allowed are rejec-
tions. Substitutions should never occur.

The fonts are not proportional (the text
is usually printed by hand using tem-
plates of the letters and numbers).

The entries are sometimes in italics and
recognizing whether they are italic or not
is crucial. For example, if a number is
written with a small font and in italics,
it delineates a building, otherwise, if the
number is in bold it delineates a parcel.

And so, there are several rules for the var- 5. Pro-ject the pixels in the direction parallel
ious types of text entries. to the sides of the parallelogram which

There may be more than 2 charac-
ters touching and within a number (or
word) there may be several occurrences
of touching characters.

In our experiments we have not considered
neither ligatures, broken characters, nor char-
acters written in serif fonts.

OUR APPROACH
To solve the problem of touching characters,
Kahan, Pavlidis and Baird (1987) list the
three subproblems must be solved: recogni-
tion, segmentation, and reclassification.

Recognition: During the recognition pro-
cess, connected components are spotted as
touching characters. The OCR system we are
using is contour-based using Fourier descrip-
tors (Lorenz and Monagan, 1994). This OCR
system returns the characters identified with a
certainty value measuring the match between
the contour and the character models. We de-
cide that two or more characters are touching
when the certainty value of a contour is below
a certain threshold. Setting this threshold is
not always trivial. For instance, if the thresh-
old is too low, then 8 is recognized as the
numeral 8 and the touching fours go unde-
tected.

Segmentation: The purpose of the seg-
mentation is to identify which parts of the
connected component belong to the contours
of the single characters. This means deter-
mining a splitting position and possibly re-
moving extra pixels which resulted from the
split. Since the OCR system that we use is
robust enough, after the split we do not need
to remove the extra pixels. Following is the
procedure that we use to segment.

1. Identify the outer contour of the connect-
ed component which ww recognized to
contain touching characters.

2. Compute the convex hull of this contour.

3. Find the baseline.

4. Form a parallelogram around the touch-
ing characters using the baseline and the
vector making a slanted angle to the
baseline (if there is such a vector). We
know that the characters are written in
italics when the parallelogram is slanted.

make an angle to the baseline.

6. Find the splitting positions in this projec-
tion using Lu's peak-to-valley function.

7. If the split fails, because no splitting po-
sitions are found or because these are
wrong, try determining the splitting po-
sitions with "brute force". We refer to
the contours to the left and to the right
of the splits as "resulting contours".

8. Change the parallelogram (as shown be-
low) and repeat steps 5. to 7. In addition
to the else if clauses below, we have flags
in our program to prevent us from con-
sidering parallelograms that have already
been tried out:

if (resulting contours reclassified)
then return splitting position

else if (parallelogram is slanted)
then swap baseline and side, do 5.-7.

else if (parallelogram is slanted)
then make it a rectangle, do 5.-7.

else if (parallelogram is a rectangle)
then swap baseline and side, do 5.-7.

else if (resulting contours not too small)
then split resulting contour(s)

else
fail.

Figure 1: This example shows how a slanted
projection is not always successful and why
we sometimes have to test with a parallelo-
gram that is a rectangle (i.e. why we have
to change the original parallelogram). (a) is
an example of a 30 that was successfully split
from the slanted parallelogram (as shown in
(b)). In contrast, the 30 in (c), which was
taken from the same map, needed a further
iteration with a perpendicular projection. (d)
shows the rectangle and the correct split.

Reclassification: The contours which re-
sult from the split(s) are input into the OCR

system again. It must be decided whether to
accept these new contours (the old one), or
neither. As before, we rely on the OCR pro-
gram's certainty values. If the certainty values
are not high enough, we reject the split(s) and
return that splitting into meaningful charac-
ters was not possible.

SEGMENTATION DETAILS

F i n d i n g t h e Basel ine: Our approach is
somewhat similar to the work of Takizawa et,
al. (1993). Though used for the extraction of
Chinese character strings in "unformed" doc-
uments, they too begin by finding the convex
hull of the Chinese characters since the direc-
tion of the t,ext is not known a priori.

We weight each vector of the convex hull
with its length plus the lengths of the vectors
in t,he convex hull that are parallel (or almost
parallel) to this vector. The vector with the
longest length and the highest weight is de-
clared to be the baseline.

To determine whether the touching charac-
ters could have been written in italics, we look
for a "significant" vector of the convex hull
whose angle to the baseline lies in a range of
say 55' to 75'. We use the lengths of the
angles parallel to a vector as a weight in de-
termining which vector (if any) is significant,
and in addition we want the ratio of the base-
line to this vector to be large enough before we
declare the vector to be significant. It is not
always possible to tell which is the baseline
and which is the vector slanted to the base-
line. Thus we need to try sometimes both
variations.

D e t e r m i n i n g the Para l le logram: The
parallelogram around the touching characters
is calculated by first fitting a rectangle, which
is parallel to the baseline, from the convex
hull. If a significant vector which makes a
slanted angle to the baseline was found, sec-
ond rectangle is formed, this time parallel to
the slanted vector. Both rectangles are then
intersected and the intersecting points deter-
mine the parallelogram (Jenny, 1993).

Spl i t t ing: To find the splitting position,
we use the discrimination function given by
Lu (1993). It is based on the vertical (and
in our case angled) projection fl~nction ? I (x) .
We rcpoat here her peak-to-valley funcbiori

u(1p) -2*v x fu rp
PV(X) = \ (where x is the cur-
rent position, l p is the peak location on the

left side of x and r p is the peak location on
the right side of x.

As described in the paper, when the minima
in the projection are sharp, these correspond
to maxima in pv(x). However, the minima
due to two characters are not always sharp.
This function works well for "good" cases but
it fails to find the dividing lines for "harder"
cases like the number 584 shown on Figure 3.
Lu writes that the break points should be con-
sidered as potential break points. We noticed
that sometimes the break points are too close
to each other, as in the numeral 443 shown on
Figure 3 because the maxima are too close to
each other along the x-axis. We correct this
by averaging the two maxima into one.

Not satisfied with all the cases missed or
with wrong splitting positions, we decided to
use a "brute force approach" for the hard cas-
es. We begin by splitting at positions roughly
based on the number of characters that could
be composing the touching contour. We con-
sider one splitting position a t a time. If the
contours resulting from the split cannot be re-
classified, then the splitting position is shifted
to the right and to the left until either both
resulting contours t o the left and right of the
split are recognized, or until the next splitting
position is encountered.

If this fails, we assume that we took too
few splits and we try the whole process again
increasing the number of splits. However, we
cannot guarantee that a split will be found.
If the main contours of the bitmap are not
identified, then we report that the split was
not successful.

Figure 2: (a) is the original bitmap. (b) shows
the convex hull and (c) the parallelogram. (d)
shows a wrong split which would result if it
was required that only one resulting contour
to one side of the splitting position be reclas-
sified. In (d) one can identify an A on its side,
but the other contour, to the right of the split-
ting position, cannot be rcclassificd. (e) shows
thc correct split, with the characters t,o t,hc
left and to the right identified as 3 and 4.

EXPERIMENTS
We have tested the approach presented here
on numbers of cadastral maps. Figure 3 shows
some numbers that were segmented. We have
drawn the parallelogram used for the projec-
tions and the split positions have been drawn
as white lines. In all the cases in Figure 3,
the results from the OCR program on the
split contours were satisfactory except for 240
where the best answer returned by the OCR
system is 2q0.

CONCLUSION
If a full map recognition system is to be built,
a way of splitting touching characters will
have to be implemented. The approach pre-
sented here is very specific for identifying nu-
merals which have been written in any direc-
tion in a map, even when this direction is un-
known. The results presented are satisfactory.

Acknowledgments: This work was partly
supported by the AEW and the KWF, project
2540.1. AEW also provided us with the cadas-
tral maps used in our tests. Parts of the pro-
gram to split characters were implemented by
T . Jenny. We are grateful to M. Monagan
and 0. Lorenz for their valuable input and to
0 . Lorenz for making his OCR program avail-
able.

REFERENCES
[I] T. Jenny. Trennung sich beruhrender Ze-

ichen. Informatik-Semesterarbeit am In-
situt fur Informationssysteme der ETH
Zurich, 1993.

[2] S. Kahan, T. Pavlidis, and H. S. Baird. On
the Recognition of Printed Characters of
Any Font and Size. IEEE Trans. of Pat.
Anal. and Mach. Int., PAMI-9(2):274-
288, March 1987.

[3] 0 . Lorenz and G. Monagan. Retrieval of
Line Drawings. In Proc. of the Third An-
nual Symp. on Doc. Analysis and Inf, Re-
trieval, pp. 461-468, Las Vegas, Nevada,
Apr. 1103 1994.

[4] Yi Lu. On the Segmentation of Touching
Characters. In Proc. of the Second Int.
Conf. on Doc. Analysis and Recognition,
pp. 440-443, Tsukuba, Japan, October 20-
22 1993.

[5] K. Takizawa, D. Arita, M. Minoh, and
K. Ikeda. Extraction of Character Strings
from Unformed Docuemnt Images. In
Proc. of the Second Int. Conf. on Docu-
ment Analysis and Recognition, pp. 660-
663, Tsukuba, Japan, October 20-22 1993.

v m &
B ma-

Figure 3: Results from splitting some touch-
ing characters. A threshold is used to deter-
mine whether a rectangle or slanted parallel-
ogram is approximated around the touching
443. Note how the side of the 4 contributes
towards the slanted parallelogram; nonethe-
less, 443 is split correctly both when the par-
allelogram is slanted and when it is not.

