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ABSTRACT

In this paper we consider both the problem of fitting
and tracking an amorphous object in a plane. In eval-
uating these problems, we propose a physically based
approach using an active contour model. We define a
texture feature vector and apply it to the active con-
tour model. In addition, we make the model adaptive.
A method for changing the topology which allows even
automatic contour splitting into two or more parts is
shown. We discuss in detail how the various param-
eters and forces of the active contour can be selected.
To promote the convergence of the iteration process, we
employ a time-varying damping factor. The proposed
adaptive contour model has been successfully applied to
the contour extraction process from a sequence of mi-
croscopic images, and also to the study of deformations
along the cross-sections.

INTRODUCTION

This paper elaborates upon a number of issues related
to with the development of techniques to permit fitting
and fracking of deformable objects in a plane.

More specifically, we are interested in the visual fitting
of deformable contours to the cross-sections of biological
organs as their boundaries move and deform along a se-
ries of cross-sections. We regard such biological organs
as ideal amorphous objects because their boundaries can
deform slightly from one section to the next. The series
of microscopic cross-sections can be viewed as a tem-
poral series of images; the dynamics of boundaries can
then be characterized by time-dependent variations in
position and shape.

CoNTOUR FITTING PROBLEM

We are attempting to address two problems related to
computer vision:

1. The problem of segmentation of an image and se-
lection of significant properties.

2. The description of the shape of an amorphous ob-
ject in both the static and dynamic cases.
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The essential contribution of this paper to the solution
of problem 1) is the proposed representation of an im-
age with its field of feature vectors defined on textures.
Problem 2) was originally solved using an active con-
tour model (ACM), a solution proposed by Kass et al.
(1987). We examine and extend this model to an adap-
tive one capable of shrinking and splitting into several
parts.

An ACM can be represented as an energy-minimizing
spline controlled by image forces such as lines, edges and
textures. Moreover, internal forces impose smoothness
constraints on the spline. The spline, therefore, finally
models the boundary of an organ.

PROBLEMS AND NEW APPROACHES

The original model proposed by Kass et al. suffers
from some difficulties that require clarification:

o The ACM has several parameters: elasticity, mass,
damping constant and weight functions w;, 1 =
1,...,4 [5],[6). The problem is how to select them.

® An initial estimate of the contour is necessarily se-
lected as close as possible to the object boundary,
especially for concave objects.

e The ACM iteration process prefers the solutions of
the shortest length, in other words, the ACM nat-
urally tends to shrink.

¢ There are also some problems including numerical
instability; improvements and discussions concern-
ing stability can be found in [3],[6].

We discuss the above difficulties and propose a new
ACM based on a texture representation of an image. We
consider an image divided into the small lattices M = M,
and each lattice is a texture represented as a stochas-
tic two-dimensional field. A texture model is a mathe-
matical procedure capable of producing and describing
a textured image. Furthermore, for each lattice a 7-
dimensional vector, called a texture feature vector, con-
sisting of the parameters of the texture model is defined.
Various proposed improvements can be summarized as
follows:

e Instead of using only a scale space representation
of an image, defined in [7], we propose to use a tex-
ture representation of the image in addition to scale



space. This kind of representation moves the ACM
close to the border between two different types of
textures. As a texture representation, we employed
the “Simultaneous Autoregressive Model” (SAR), a
model that is well researched in [4].
We extended the potential energy of the ACM, em-
ploying both the proposed texture edge energy and
area energy.
Because of the newly proposed ACM, we define new
parameters and introduce new rules for setting the
parameters adaptively.
e To promote the convergence of the iteration pro-
cess, we employ a time-varying damping factor ~(t).
e We make the ACM adaptive, in other words, the
rules for inserting and deleting a point in the ACM
are defined. Furthermore, we have developed a
method for altering the ACM topology by fulfilling
the rule of contour division.

NEwW AcTIiVE CONTOUR MODEL

An ACM is a deformable curve composed of ab-
stract elastic materials. Consider an ACM v(s,t) =
(z(s,t),y(s,t)) with a spatial parameter s and time ¢
defined on intervals @ and T, respectively. Let I(z,y,1)
denote the image intensity at position (z,y) in time ¢.
The potential energy function of the ACM is defined
in [5]. On addition, the new energy terms Fyeypure and
Eqreq are defined. The total energy is then written as

1
E.makc Eﬁ/ '{E""(U) + Eimngc{u)

Elc.r!ur:{"'] + Earen{u)} d.?. (l)

Denoting w; (1 = 1,...,6) as the weight parameter for
each energy term, we employ the following energy terms
in the total energy, whereas the first two of them have
been proposed in [5],[8].

1. Internal potential energy, i.e., first- and second-
order continuity terms

+

Bt = wl(s)”v-"2 + w;(s}"v,,”z, (2)

where subseripts denote the partial derivatives,

2. The image energy as a combination of image inten-
sity and gradients of intensity smoothed by Gaussian
filter

Enmnpc = wa‘([:ly) + wi"v(Go * I(:' .’:’))”2 {3)

3. Any small lattice M x M within the image is rep-
resented as an SAR model appropriate for texture de-
scription. The parameter estimations of the SAR model
defined on a lattice are collected into a vector

F o= (6(0,1),6(1,0),0(1,1),0(-1,-1),
ﬁN; s .éNgv “ﬂ)

called a texture feature vector introduced by Durikovié
et al (1994). A texture feature vector is defined for
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each point (z,y) within the image domain. Parameters
{6(0,1),6(1,0), 5, } and {6(1, 1), O(~1,~1), o, } are
obtained by the horizontal and vertical texture infor-
mation, respectively [4]. pq, denotes the mean in the
lattice M x M.

Based on the above definition of the tezture feature
vector, we propose the new texture potential energy for
separation of textures as

Ete.:lur: = w&“( Ful F:).

(4)

in other words, a similarity measure p between the 7-
dimensional ferture feature vectors F, and F}. Where
F, is a texture feature vector atl point v(s,t), while F}
is a vector at the auxiliary point V,*(s,t) derived from
u(s,t) as

Vi (s, 1) = u(s,t) + €N,

where N, is the outward contour normal at point v(s, 1),
and £ > 0 is a small constant.
4. A new area term defined as
Wy

Earcn = T

Iy
n

Iz

Y2

Wg

2

Iy T

5
Yn % (5)

for a non-selfintersecting active contour with spatial dis-
cretization carried out by sampling of contour v into N
nodes, v,= (z,,%) (i = 1,..., N). This term makes the
ACM shrink or grow like a balloon according to the sign
of wg.

DyNAMICS

Given the potential function (1), an active contour
model is described by its position v(s,t), velocities
%:(s,1), and accelerations -g—:?{s, t) of its mass elements
as a function of parameters s and time ¢, According
to Newtonian law expressed by Lagrange’s equations of
motion, the dynamics of each vertex v(s, () is expressed
by

@2 v

v i)
pw(s!t)+7‘a{svt}+l'lni = Fe:h [6]

where y(s) and +(s) are mass density and damping fac-
tor, respectively; force F, is introduced to make the
contour continuous, while F,,, corresponds to external
forces. Both F,,, and F,; depend on contour position
v(s) and time ¢,

The internal force F, is derived from a nonnegative
potential energy E,..(v) as its variational derivate,

6By
Fm[ = l{v)|
du

and represents the elastic force at each contour point.

The fitting and tracking process of the active contour
is controlled by a field of external forces given as a sum
of the gradients of energies (3),(4), and (5):

Fopt = WIVEImnye + VEieriure + WAVEurm-

Adaptive weight functions W, and W, control the
strength of the image and area forces, respectively.



DISCRETIZATION AND ADAPTIVE
DAMPING FACTOR

A simplified Eq. 6 is obtained by setting the mass
density pu(s) to zero, while preserving the dynamics:

v
Ta(sit) b Pml = Fﬂ:l‘

This model is sufficient to computer vision applications
that involve the fitting and tracking of a contour to im-
age data.

Let us first consider the discretization of the active
contour model in both domains of space and time. The
space discretization is done by sampling the function
v(s) into N nodes, leading to the N-dimensional vector
v. The time discretization is achieved similarly by a time
step At. Thus, the forces F,,; and F..; are discretized
as N-dimensional vectors .i",,,, and i'u,. The discrete
vector F,,, can be written in the matrix form Fi. =
K v, where K yyy is known as a stiffness matrix. This,
clearly leads to the numerical integration of the equation
of motion. To obtain the precise solution quickly, the
first-order Euler method is implemented. The position
of active contour v(s, 1) is then updated according to the
expression

oAt = ot 4 Aty (P, — K - 0'). (7)
Speeding the Iteration Process

The damping factor + controls the stability and speed
of the iteration process given by Eq. 7. Asin the steepest
descent method [1], we established parameter v as a
dependent of time, i.e. ¥ = y(1). For each time step, we
define ~(t) from the condition for the minimum of the
equation

‘L’['Tl] == E.make(”t == Ai'}’tvEmake(ut})\

where the gradient of the potential energy is derived as
VE e = K -0t — F.,.

At each time step we have to solve the equation
¥'(4') = 0 with one unknown 4'. This can be done
by one of the numerical methods used for the solution
of high-degree algebraic equations. We have used the
Newton-Raphson method with success. Should there be
other minima in the neighborhood of required solution
v, and should the choice of v° not be made well, the
process diverges and will not lead to the required solu-
tion. In that case, this problem is overcome by a skillful
choice of initial solution +°.

ADAPTIVE PARAMETERS

We will now consider how to fix the snake parameters
W; and W, in the discrete domain. Let us first define
the shrinking part of the contour as where the image
forces gain less magnitude.

The weight, Wy, for area force scales the magnitude
of area force with a nonzero value along the shrinking
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part of the contour, while for the other parts the area
force is set to have a magnitude of zero. Consequently,
we propose the parameter W, as a continuous function
of 6 along the active contour v(s), written as

=8

" e Lk
WA{B)={ 2+20cosL b<1L

otherwise (8)
where L is a parameter controlling the vanishing of the
area force, and 8 = |V E,,.,,.(v(s))| denotes the norm of
the image force given at a contour point v(s).

The image intensity in the narrow area around the
shrinking part of the contour is not usually a constant
value but has a small variation due to the noise distribu-
tion. It arises in the small magnitudes of image forces
|V B nage| that should be neglected till they exceed a
ceriain threshold value Ly. In this sense and similar to
the introduction of W, we introduce the parameter W,
written as

1-WalZ2z(0- L))  Lo<f<L
W;[G}: 0 9 g LO
1 otherwise
(9)

where Ly and L are parameters controlling the vanishing
interval of image force.

Parameter Lg, in our implementation, is selected by
the method whereby the image force at a certain point
is neglected till at least 90% of the area force magni-
tude at that point is applied in Eq. 6. This leads to
Lo = £ arccos 0.8. Due to space limitations, we will note
simply that parameter L is also estimated automatically
from the histogram of values 6 along the active contour.
The automatic estimations result in L = 8.01 in the case
of Fig. 3, with good shrinking behavior. A plotted graph
of the weight functions W(-) and W;(-) is illustrated in
Fig. 1.
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Figure 1: Weight function, Wy, of the area force and
the weight function, W;, of the image force used with
parameters L = 8 and Lg as discussed above.

CHANGING THE hT/‘[OPOLOGY OoF

a

In this section, we address basic operations for the au-
tomatic creation of a contour topology. For a single con-
tour point, the operations of adding and deleting are the
most fundamental. For the entire contour, the operation



of a contour division into n parts is proposed. Assuming
that the contour points are in a near-equilibrium config-
uration with respect to the internal potentials, topology
operations are defined as the following heuristic rules.

1) Adding a Single Point: If the distance between two
points v;, 4, satisfies the criterion dmin < |0, =4, <
dynars @ new point is created between the two points.
Typically used thresholds are d,,,,, =~ 1.7d and dpor =
2.5d, where d is the average inter-point distance.

2) Deleting a Single Point: If two neighbor points are
separated by a distance D such that D < D,,,, one
of these points is deleted. We have experimented with
Dpin = 1d.

3) Division of a Contour: If two points v, and v,
satisfy the following conditions, then a contour is divided
into two parts by the segment v,v,;

o |v, — v,| < d.y, where d,, is a constant.

e The projections of vectors V E,,., at points v, and
v, onto the vectors 9,1, and v, v,, respectively, have
opposite directions.

Moreover, a contour is divided recursively into n parts
if n pairs obeying the above conditions exist.

OBTAINED RESULTS

The proposed adaptive ACM was implemented on a
Silicon Graphics Workstation Indigo (85 MIPS) and em-
bedded in a reconstruction system from a set of cross-
sections already developed. Compared to the classical
ACM, the accuracy of the results improved, especially
in those parts of the image where only a small differ-
ence exists between the texture patterns of the observed
object and surrounding objects. At the same time, the
computation time was decreased and the convergence
rate improved due to the time-varying damping factor
¥(t).

One of the original images scanned from the micro-
scope and the final position of the ACM are shown in
Fig. 2. The example in Fig. 3 shows 26 microscopic
cross-sections with 7um inter-slice distance. We fit the
adaptive ACM to a series of images from bottom to top,
starting from one closed contour. While moving and
tracking the contours from slice to slice, new points are
automatically inserted to get better results for concave
parts of the object. Consequently, the adaptive ACM
splits into three parts and the tracking of each part con-
tinues, separately.

The proposed adaptive ACM has been successfully
applied to the reconstruction process from a set of mi-
croscopic images, and also to the study of deformations
along the cross-sections.

CONCLUSIONS

In this paper, the improvement and extension of ACM
for fitting contours to the boundaries of amorphous ob-
jects have been proposed. Our adaptive ACM provides
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Figure 2: An example of the original image related to
the fitting process.

Figure 3: Tracking the brain of a mouse embryo through
cross-sections visualized as a stack of contours. The
scale for all axis directions is the same.

more accurate solutions for concave parts of an object,
while changing its topology, as well as an improvement
in the convergence rate of the ACM iteration procedure.
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