
MVA'94 IAPR Workshop on Machine Vision Applications Dec. 13-1 5, 1994. Kawasaki 

ADAPTIVE CONTOUR MODEL USING TEXTURE 
FEATURE VECTORS 

Roman ~ u r i k o v i ~ :  Kazufumi Kaneda, Hideo Yarnashita 
Faculty of Engineering, Hiroshima University, 1-4-1 Kagamiyama 

IIigashihiroshima 724, Japan 

ABSTRACT 
In this paper we consider both the problem of fitting 

and tracking an amorphous object in a plane. In evnl- 
uat,ing these problems, we propose a physically based 
approach using an active contour model. We define a 
texture feature vector and apply it to the active con- 
tour model. In addition, we make the model adaptive. 
A method for changing the topology which allows even 
automatic contour splitting into two or more parts is 
shown. We discuss in detail how the various param- 
eters and forces of the active contour can be selected. 
To promote the convergence of the iteration process, we 
employ a time-varying damping factor. The proposed 
adaptive contour model has been successfully applied to 
the contour extraction process from a sequence of mi- 
croscopic images, and also to the study of deformations 
along the cross-sections. 

This paper elaborates upon a number of issues related 
to with the development of techniques to permit fitting 
and tracking of deformable objects in a plane. 

More specifically, we are interested in the visual fitting 
of deformable contours to  the cross-sections of biological 
organs as their boundaries move and deform along a se- 
ries of cross-sections. We regard such biological organs 
as ideal amorphous objects because their boundaries can 
deform slightly from one section to the next. The series 
of microscopic cross-sections can be viewed as a tem- 
poral series of images; the dynamics of boundaries can 
then he characterized by time-dependent variations in 
position and shape. 

We are attempting to address two problems related to 
computer vision: 

The essential contribution of this paper to the solution 
of problem 1) is the proposed representation of an im- 
age with its field of feature vectors defined on textures. 
Problem 2) was originally solved using an active con- 
tour  model (ACM), a solution proposed by Kass et al. 
(1987). We examine and extend this model to an adap- 
tive one capable of shrinking and splitting into several 
parts. 

An ACM can be represented as an energy-minimizing 
spline controlled by image forces such as lines, edges and 
textures. Moreover, internal forces impose smoothness 
constraints on the spline. The spline, therefore, finally 
models the boundary of an organ. 

The original model proposed by Kass et  a[. suffers 
from some difficulties that require clarification: 

The ACM has several parameters: elasticity, mass, 
damping constant and weight functions w,, i = 
1, .  . . , 4  [5],[6]. The problem is how to select them. 
An initial estimate of the contour is necessarily se- 
lected as close as possible to the object boundary, 
especially for concave objects. 
The ACM it,eration process prefers the solutions of 
the shortest length, in other words, the ACM nat- 
urally tends to shrink. 
There are also some problems including numerical 
instability; improvements and discussions concern- 
ing stability can be found in [3],[6]. 

We discuss the above difficulties and propose a new 
ACM based on a texture representation of an image. We 
consider an image divided into the small lattices M x M, 
and each lattice is a texture represented as a stochas- 
tic two-dimensional field. A t,exture model is a mathe- 
matical procedure capable of producing and describing 
a textured image. Furthermore, for each lattice a 7- 
dimensional vector, called a texture feature vector, con- '' The segmentation an image and s'- sisting of the parameters of the texture model is defined. 

lect,ion of significant properties. 
Various proposed improvements can be summarized as 

3. The description of the sha.pe of an amorphous ob- 
follows: 

ject in both the static and dynamic cases. 

'On leave from Department of Computer Graphics and Im- Instead of using only a scale space representation 
age Processing, Faculty of Mathematics and Physics, Comenius of an image, defined in [7], we propose to use a tex- 
University, Bratislava, Slovakia. ture representation of the image in addition to scale 



SpaCe・ThiskindofrepresentationmovestheACM  
Closetotheborderbetweentwodi仔erenttypesof  
text11reS・Asatexturerepresentation，Weemployed  

the“SimultaneousAutoregressiveModel”（SAR），a  
modelthatiswellresearchedin［4】．   
●WeextendedthepotentialenergyoftheACM，em－  
ployingboththeproposedtextureedgeenergyand  
areaenergy・   

●BecauseofthenewlyproposedACM，Wedefinenew  
ParameterSandintroducenewru1esforsettingthe  
ParameterSadaptively．   

●Topromote the convergenceoftheiteration pro－  

CeSS，Weemployatime－Varyingdampingfactor7（l）．   
●We make theACM adaptive，inother words，the  
rulesforinsertinganddeletingapointintheACM  
are defined．Furthermore，We have developed a  
methodforalterlngtheACMtopologybyfulⅢling  
t．heruleofcontourdivision．   

NEW AcTIVE CoNTOUR MoDEL  

An ACMis a defbrmable curve composed of ab－  
StraCt elastic materials・Consider an ACM v（s，l）＝  
（x（s，l），y（s，t））with aspatialparameter s and timei  
definedonintervalsOandT，reSpeCtively．LetI（x，y，t）  
denot・etheimageintensityatposition（x，y）intimei．  
The potentialenergy function ofthe ACMisde航ned  
in［5］・Onaddition，thenewenergytermsE．ec，u，eand  
E。，eaarede爺ned・ThetotalenergyisthenwrittenaLS   

β川。たe＝；／（昂n刷・β叩（〃） n  
＋ βtび加e（む）＋且，亡。（〃））dβ・ （1）  

Denotingw．（i＝1，‥・，6）astheweightparameterfor  
eachenergyterm，WeemploythefollowlngenergytermS  
inthetotalenergy，Whereasthefirsttwoofthemhave  
beenproposedin［5］，［8］．  

1・Jnfer乃αノアofe円山Je乃叩y，i．e．，石rst－and second－  

Ordercontinuityterms  

eachpoint（37，y）withintheimagedomain．Parameters  

†句0，1），6（1，0），ん1）and（函1，1），6（－1，－1），ん，）are  
Obtained by the horizontaland verticaltextureinfor－  
mation，reSpeCtively［4】．pn，denotesthemeanin the  
lattice〃×〟．   

Basedontheabovede触itionofthe teEtureJea加e  
VeCtOr，WeprOPOSethenew te3turePOtentLaLener9yfor  
Separationoftexturesas  

βfαfw，。＝ひ5〃（凡，打），  （4）  

inotherwords，aSimilarity measureFLbetweenthe7，  
dimensionalterture／eaturevectorsFLandF：．Where  
凡isaterture／eaturevectoratpointv（s，l），WhileEご  
isavectorattheauxiIiarypointl灯（s，t）derivedfrom  

り（β，り鮎  

lで（β，り＝申，f）＋ぞ〃”  

WhereN．istheoutwardcontournormalatpointv（s，t），  
andE＞Oisasmallconstant．   

4，A new area teT・mde航ned as  

ヱ1 ∬2  

yl y2  
・…＋  

J〃 ご】  

y〃 yl  
（5）  

foranon－Sel餌tersectingactLveconlourwithspatialdis－  
CretizationcarriedoutbysamplingofcontourvintoN  

nodes，t，．＝（＝．，y．）（i＝1，…，N）．Thistermmakesthe  
ACMshrinkorgrowlikeaballoonaccordingtothesign  
Ofひ6．  

DYNAMICS  

Given the potentialfunction（1），an aCtivecontour  
modelis described byits position v（s，i），Velocities  
告（s，l），anda‘Celerations袈（s，t）ofitsma5Selements  
asafunctionofparameterss and timel・According  
toNewtonianlawexpressedbyLagrange’sequationsof  
motion，thedynamicsofeachvertexv（s，l）isexpressed  

by   

〃芸㈹・7芸（ちり＋∫ふ＝彗血， （6）  

WhereFL（s）and7（s）aremassdensityanddampingfac－  
tor，reSpeCtively；force F：nLisintroduced to make the  

COntOurCOntinuous，While Fktcorrespondstoexternd  

k）rCeS・BothF：n‘andFktdependoncontourposition  
t車）andtimef．   

TheinternalforceF；ntisderivedfromanonnegative  
potentialenergyElnt（v）asitsvariationalderivate，  

β，れ亡＝ひ1（り‖仇‖2＋ひ。（可‖町＝ll2，  （2）  

Wheresubscriptsdenotethepartialderivatives．   
2・Theima9eener9yaSaCOmbinationofimageint・en－  
Sity and gradients ofintensitysmoothed by Gaussian  
爪Iter  

βJm叩＝ひ3J（ェ，y）＋叫Il∇（GJ★J（ェ，y）川2．（3）   

3■Anysmal11atticeMxMwithintheimageisrep－  
resented as anSARmodelappropriatefortexturede－  

SCription・TheparameterestimationsoftheSARmodel  
de石ned onalattice arecollectedintoavector  

ダ＝（函0，1），句1，0），叫1，1），6（一1，－1），  

ん1，β〃”㈲）  

Ca11edaleEture／eaturevectorintroducedbyIうurikovie  
et aI（1994）．A terturejeature vectoTis de6ned for  

∂β．n！（γ）  
薫れt＝   

andrepresentstheelasticforceateachcontourpoint・   
The飢tingandtrackingprocessoftheactLvecontotLr  
iscontroIIedbyaGeldofexternalforcesglVenaSaSum  
Ofthegradientsofenerdes（3），（4），and（5）：  

差出＝l隼∇昂m叩＋∇βf。J血e＋ⅣA∇且，。。．  

Adaptive weight functions WI and WA cOntrOl the 
StrengthoftheiTna9eandareabrces，reSpeCtively・   
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DISCRETIZATION A N D  ADAPTIVE 
DAMPING FACTOR 

A simplified Eq. 6 is obtained by setting the mass 
density ,u(s) to  zero, while preserving the dynamics: 

This model is sufficient to  computer vision applications 
that involve the fitting and tracking of a contour to im- 
age data. 

Let us first consider the discretization of the active 
contour model in both domains of space and time. The 
space discretization is done by sampling the function 
v ( s )  into N nodes, leading to the N-dimensional vector 
v .  The time discretization is achieved similarly by a time 
step At. Thus, the forces F,,t and FUt are discretized - - 
as N-dirflensional vectors F,,, and F a t .  The d k r e t e  
vector F,,, can be written in the matrix form Fin, = 
K - v ,  where K N x N  is known as a stiffness matrix. This, 
clearly leads to the numerical integration of the equation 
of motion. To obtain the precise solution quickly, the 
firsborder Euler method is implemented. The position 
of active contour v ( s ,  t )  is then updated according to the 
expression 

spekding the Iteration Process 
The damping factor y controls the stability and speed 

of the iteration process given by Eq. 7. As in the steepest 
descent method [I], we established parameter y as a 
deprndent of time, i.e. y = y ( t ) .  For each time step, we 
define y ( t )  from the condition for the minimum of the 
equation 

where the gradient of t,he potential energy is derived as - t 
V E s n a k e  = K .  vt - Elmt. 

At each time step we have to solve the equation 
V ( y t )  = 0 with one unknown yt. This can be done 
by one of the numerical methods used for the solution 
of high-degree algebraic equations. We have used the 
Newton-Raphson method with success. Should there be 
other minima in the neighborhood of required solution 
v ,  and should the choice of v0 not be made well, the 
process diverges and will not lead to the required solu- 
tion. In that case, this problem is overcome by a skillful 
choice of initial solution vO. 

We will now consider how to fix the snake parameters 
W I  and W A  in the discrete domain. Let us first define 
the shrinking part of the contour as where the ima.ge 
forces gain less magnitude. 

The weight, WA, for area force scales the magnitude 
of area force with a nonzero value along the shrinking 

part of the contour, while for the other parts the area 
force is set to have a magnitude of zero. Consequently, 
we propose the parameter WA as a continuous function 
of 6' along the active contour v ( s ) ,  written as 

; + ; c o s 2  B < L  
otherwise (8) 

where L is a parameter controlling the vanishing of the 
area force, and 8 = JVE,,,,,(v(s))l denotes the norm of 
the image force given at  a contour point v ( s ) .  

The image intensity in the narrow area around the 
shrinking part of the contour is not usually a constant 
value but has a small variation due to the noise distribu- 
tion. It arises in the small magnitudes of image forces 
IVE,,,,I that should be neglected till they exceed a 
certain threshold value Lo. In this sense and similar to 
the introduction of WA, we introduce the parameter WI,  
written as 

1 - A - L ) )  Lo < B < L 
W I ( @ )  = { 0 I Lo 

otherwise 

(9) 
where Lo and L are parameters controlling the vanishing 
interval of image force. 

Parameter Lo, in our implementation, is selected by 
the method whereby the image force a t  a certain point 
is neglected till a t  least 90% of the area force magni- 
tude at that point is applied in Eg. 6. This leads to 
Lo = 4 arccos 0.8. Due to spa.ce limitations, we will note 
simply that parameter L is also estimated automatically 
from the histogram of values B along the active contour. 
The automatic estimations result in L = 8.01 in the case 
of Fig. 3, with good shrinking behavior. A plotted graph 
of the weight functions W A ( - )  and W I ( - )  is illustrated in 
Fig. 1. 

Figure 1: Weight function, WA, of the area force and 
the weight function, WI,  of the image force used with 
parameters L = 8 and Lo as discussed above. 

CHANGING THE TOPOLOGY OF 
ACM 

In this section, we address basic operations for the au- 
tomatic creation of a contour topology. For a single con- 
tour point, the operations of adding and deleting are the 
most fundamental. For the entire contour, the operation 



of a contour division into n parts is proposed. Assuming 
that the contour points are in a near-equilibrium config- 
uration with respect to  the internal potentials, topology 
operations are defined as the following heuristic rules. 

1) Addang a Sangle Point: If the distance between two 
points a,, a,+, satisfies the criterion dm,, 5 la, -a,+,[ 5 
dm,,, a new point is created between the two points. 
Typically used thresholds are dm,, z 1.7d and dm,, z 
2.5d, where d is the average inter-point distance. 

2) Deletzng a Single Poant: If two neighbor points are 
separated by a distance D such that D < Dm,,, one 
of these points is deleted. We have experimented with 
Dm,, z id .  

3) Dzvisaon of a Contour: If two points a, and a, 
satisfy the following conditions, then a contour is divided 
into two parts by the segment a,v,; 

Iv, - vjl 5 dm,, where dCut is a constant. 
The projections of vectors VE,,,, at points a, and 
v, onto the vectors a x  and a x ,  respectively, have 
opposite directions. 

Moreover, a contour is divided recursively into n parts 
if n pairs obeying the above conditions exist. 

The proposed adaptive ACM was implemented on a 
Silicon Graphics Workstation Indigo (85 MIPS) and em- 
bedded in a reconstruction system from a set of cross- 
sections already developed. Compared to the classical 
ACM, the accuracy of the results improved, especially 
in those parts of the image where only a small differ- 
ence exists between the texture patterns of the observed 
object and surrounding objects. At the same time, the 
computation time was decreased and the convergence 
rate improved due to the time-varying damping factor 
d t ) .  

One of the original images scanned from the micro- 
scope and the final position of the ACM are shown in 
Fig. 2. The example in Fig. 3 shows 26 microscopic 
cross-sections with 7pm inter-slice distance. We fit the 
ada.pt.ive ACM to a series of ima.ges from bottom to top, 
sta.rt,ing from one closed contour. While moving and 
tra.cking the contours from slice to  slice, new points are 
automatically inserted to get better results for concave 
part,s of the object. Consequently, the adaptive ACM 
splits into three parts and the tracking of each part con- 
tinues, separately. 

The proposed adaptive ACM has been successfully 
applied to  the reconstruction process from a set of mi- 
croscopic images, and also to the study of deformations 
along the cross-sections. 

In this paper, the improvement and extension of ACM 
for fitting contours to  the boundaries of amorphous ob- 
jects have been proposed. Our adaptive ACM provides 

Figure 2: An example of the original image related to 
the fitting process. 

Figure 3: Tracking the brain of a mouse embryo through 
cross-sections visualized as a stack of contours. The 
scale for all axis directions is the same. 

more accurate solutions for concave parts of an object, 
while changing its topology, as well as an improvement 
in the convergence rate of the ACM iteration procedure. 
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