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ABSTRACT 
Ill-posed inverse problems are widely encountered in 

computer vision. examples include shape from shading, sur- 
face reconstruction from sparse data and optic flow. 
Unique solutions to these problems are conventionally 
found by minimizing an objective function regularized by 
a smoothness constraint. However, objective functions of 
this form often contain many local minima, making it diffi- 
cult to find an adequate solution by standard numerical 
methods. 

We describe an algorithm for solving inverse problems 
using scale space tracking which is robust, provably conver- 
gent and avoids local minima. The algorithm generates a 
hierarchy of solutions at different scales, forming a scale 
space from which a final solution can be selected at a later 
stage. We show how the use of gaussian basis functions to 
construct solutions can result in scale space behaviour with- 
out the need to blur the input data. 

Results are shown for shape from shading and surface 
reconstruction from stereo data, using both real and syn- 
thetic images. 

INTRODUCTION 
Almost every important problem encountered in com- 

puter vision may be viewed as an ill-posed inverse problem: 
inverse because we are taking the end result of the physical 
process of imaging and wish to deduce something about the 
obsenfed scene. and ill-posed because the imaging process 
discards liiuch of the information in the scene being ob- 
served. To ohiain solutions to these problems we avvlv . . .  
(either wittingly or unwittingly) heuristic assumptions about 
the solution we expect, and much of current computer vision 
research is involved in finding useful assumptioks to make. 

The classical approach to solving ill-posed inverse prob- 
lems found in the numerical analysis literature involves 
minimizing an objective function regularized with a smooth- 
ness constraint, typically of the following form: 

n(u) + (1) 

where 4 is a measure of how well the solution u fits the 
data, s) is a "lack-of-smoothness" measure (eg the sum of 
squared second derivatives), and controls the trade-off 
between explaining the data and smoothness. The heuristic 
assumption being made here is that the solution should be 
smooth in some sense, since most functions encountered 
when modeling the real world are smooth. This assumption 
has been found to bevalid in many areas of computer vision: 
for example, the fact that physical surfaces tend to be 
smooth can be used in surface reconstruction from sparse 
data and shape from shading; and the fact that most moving 
objects are rigid and travel in a smooth trajectory allows 

smoothness to be used in optic flow and motion problems. 

Whilst the regularization approach has been used suc- 
cessfully in awide range of domains, the nature of computer 
vision problems has highlighted several drawbacks: 

When the objective function contains local minima 
standard optimization algorithms tend to get stuck 
in them and are unable to reach an adequate sol- 
ution. 
The large-scale nature of vision problems mean 
simple iterative schemes may need to be used (via, 
for example, the calculus of variations), with con- 
vergence not guaranteed. 
The value of the constant is difficult to choose 
objectively and is usually found by guess-work 
(and is therefore sub-optimal). 

The algorithm described in this paper solves inverse 
problems usingscalespace tracking [I] and is robust, prova- 
bly convergent and does not require prior decisions to be 
made about the smoothness of the solution. Whilst our 
method is not in general guaranteed to find the optimal sol- 
ution, itwill usually find a "significant" solution which is ac- 
ceptable for many problems [2]. 

The algorithm works by generating a hierarchy of sol- 
utions at different scales, forming a scale space 131 from 
which an appropriately smooth final solution can be se- 
lected at a later stage. Two heuristic assumptions are made 
about the solution: that it is smooth (although we do not 
need to make a prior decision about exactly how smooth it 
should be); and that it is continuous. These assumptions are 
appropriate for a wide class of vision problems including 
shape from shading, stereo matching, surface-fitting to 
sparse data and image registration. 

We have applied the technique to shape from shading 
and to surface reconstruction from stereo data, achieving 
promising results in both cases. We believe our approach 
offers an effective alternative to regularization for many of 
the large-scale inverse problems found in computer vision. 

SCALE SPACE 
It has long been realised that an image possesses struc- 

ture at a range of scales and that having a description of the 
image that highlights the activity at each scale is of great use 
in analyzing the image (eg [3]). A method for decomposing 
an image (or more generally, a signal) according to scale was 
first proposed by Witkin [I] which involves progressively 
blurring the image with a gaussian to form the scale space, 
L(x,y;t): 
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where I(x,y) is the image and t > 0 is the scale parameter. 
The convolution integral (2) is also the solution to the two- 
dimensional diffusion equation: 

with the initial condition L(x,y;O) = I(x,y). A discrete scale 
space can therefore be formed either by discretizing (1) and 
performing the convolutions, or by discretizing (3) in space 
with the five- or nine-point Laplace operator and then solv- 
ing the resultant system of coupled ordinary differential 
equations using a standard numerical method such as 
the fl -method. 

SCALE SPACE TRACKING 

The concept of scale space has proved useful in minimiz- 
ation techniques for solving the large-scale non-convex 
problems which commonly occur in computer vision. The 
idea is to first find an approximate solution to the problem 
at a very large scale and then "track" this solution as the 
scale is gradually reduced [1,2]. At an appropriately large 
starting scale the problem will be convex so the first approxi- 
mation to the solution can easily be found, and although 
local minima reappear as the scale is reduced, the fact that 
the solution is being tracked through scale ensures that the 
nearest minimum is the one required. 

To formalise this procedure, the problem must first be 
expressed as the minimization of an energy functional, E(u), 
where u is the solution collapsed into a vector. At each scale 
it is required that the energy function is at a minimum, so 
we have the condition VE(u) = 0 .  To maintain this equilib- 
rium, it is necessary to minimize E at each new scale, either 
by using an optimization technique or by solving VE(u) = 0 

directly. The discrete transition from one scale to the next 
is most simply done by taking the solution at the previous 
scale as the initial condition for the minimization of E at the 
new scale. We can then write the scale space tracking algo- 
rithm as the solution of the recurrence relation: 

where f i tk)  is a deformation of the solution such that 
E(u(tk) + Ht t+ , ) )  is at a minimum, and the initial condition 
is u ( t ~ )  =O. More advanced algorithms project the solution 
from one scale to the next along the tangent to the scale 
space trajectory [4], but this approach involves the calcula- 
tion of the Hessian matrix of the energy function 
H = VVE which is of high dimension (although it may be 
sparse for certain formulations [4]). 

It should be stressed that it is the solution that is being 
tracked through scale space, so we require that scale space 
behaviour is imposed on the solution space. In the early 
work on scale space tracking (eg [1,2]) it was the input data 
(typically image data) that was gaussian blurred to form the 
scale space. For those problems where the relationship be- 
tween the input data and the solution is linear this approach 
leads to the solution space also having scale space behav- 
iour, but in those cases where a non-linear relationship ex- 
ists the solution will not be correctly blurred. An example 
where blurring the input data is not appropriate occurs in 
shape from shading, where the relationship between the 
image I(x,y) and the surface z(x,y) is given by the image irra- 

diance equation I(x,y) = R(z(x,y)). The reflectance function 
R is in general non-linear and will therefore not commute 
with the blurring operator B, ie B(R(z(x,y))) * R(B(z(x,y))) 

SCALE SPACE RECONSTRUCI'ION 

Since blurring the input data only leads to correct scale 
space behaviour in the solution space if the relationship be- 
tween the input data and the solution is linear, we instead 
choose to impose scale space behaviour onto the solution 
directly. We introduce the term "scale space reconstruc- 
tion" for algorithms that work in this way, since they must 
start without any scale space information and gradually re- 
construct the entire solution scale space. In effect, this 
means solving differential equation (3) "in reverse" (t de- 
creasing) with the initial condition L(x,y; w )  = 0 ,  making 
use of the fact that the energy function E must be minimized 
as the algorithm progresses. 

This approach was first adopted by Whitten (41 using 
solutions constructed from the deformable curves, or 
"snakes", of Kass et al. 161. Whitten realized that the con- 
cepts of smoothness and scale are essentially the same, so 
by controlling the smoothness (internal energy) of the 
snakes, scale space behaviour could be achieved. The rest 
of this paper describes an alternative approach that drops 
the scale dependent energy functional of Whitten. E(u(t),t), 
in favour of a simpler objective function F(u) that does not 
depend on scale. Scale space behaviour is not enforced via 
the energy functional, but by the tracking algorithm itself 
and the choice of basis functions for the solution. 

We will use the equivalence between scale and smooth- 
ness in the following discussion. First, let us consider the 
starting situation where we have no more information about 
the solution than the initial approximation u =O. We can 
make a small change to u that decreases the objective func- 
tion, and this will be accompaniedwith a loss of smoothness 
(corresponding to a decrease in scale). We would wish to 
choose a direction for the change that causes the greatest 
decrease in the objective function for the least cost in 
smoothness, ie the direction which maximizes the ratio: 

where du is the change in the solution, and S(u) is a 
measure of the lack-of-smoothness (or "roughness") of the 
solution (eg the sum of squared second derivatives) 
so LU corresponds to a reduction in scale. If du is made in- 
finitesimal, this direction can be approximated by the 
vector: 

Moving the solution a small distance in the direction s 
gives a new point where a new direction can be calculated 
using (6) and the trajectory continued, and so on. Unfortu- 
nately, such an approach is likely to require very small step 
lengths and would be very badly conditioned. 

The conditioning of the problem can be improved by 
parameterizing the deformation of the solution using gaus- 
sian basis functions of width appropriate for the current 
scale. The gaussian is an suitable function since it is the im- 
pulse response of the gaussian blurring kernel normally 



used to form a scale space by decomposition. We can now 
write the solution at a particular scale as: 

uk = uk+l + Ga (7) 
where G is the gaussian convolution matrix [g;j], 

g,, = eih-g2'2.k, ak controls the width of the gaussian, a is the 
vector of gaussian amplitude coefficients and xi is the grid 
co-ordinate of the ith gaussian. The initial condition for (7) 
is UN = 0, and the recurrence relation is run until the full res- 
olution solution uo is reached. The width of the gaussian 
basis functions is reduced in stages as the scale decreases, 
so a, < a,,, for all k. 

During each iteration of (7). the trajectory of the solution 
is advanced using the maximum downhill principle of (5). 
except that now it is the gaussian coefficients a that are ad- 
justed rather than the solution u. After continuing the tra- 
jectory in this way for a while, progress becomes difficult as 
the conditioning of the problem worsens due to the current - 
gaussian basis functions no longer being appropriate at the 
reduced scale. The iteration must then be completed and a 
new set of slightly narrower gaussian basis functions 
adopted ready for the next iteration. 

To improve the computational efficiency of the imple- 
mentation we relax the maximum downhill requirement of 
(5) and instead use the standard numerical technique of 
conjugategradient descent [7] to minimize the objective func- 
tion I; without regard to changes in smoothness. We can ig- 
nore changes in smoothness since the use of gaussian basis 
functions puts a bound on the loss of smoothness, ensuring 
that taking reasonably small steps in a along any direction 
does not introduce large losses of smoothness. It was shown 
in 181 that a bound on the lack-of-smoothness for the sol- 
ution uk is given by: S(uk) s s ( ~ ~ + , )  + Ck 11 a 11' , where Ck is 
a constant and Ck > Ck+ 1. Since the bound is dependent 
on Ck, which increases as the gaussians become narrower, 
a change of basis to narrower gaussians should not be made 
until the rate of convergence using the current basis is so low 
as to make the change necessary. 

The set of solutions uk, k=O, ..., N define a scale space 
from wtich the final solution can be selected. For a least- 
squares objective function this niay be done by choosing the 
smoothest solution where the value of chi-squared is less 
than the number of independent measurements. We are in- 
vestigating other criteria for selecting the final solution. 

EXAMPLES 
For shape from shading an appropriate objective func- 

tion is the brightness error between theobserved image and 
the rendzred image of the solution surface 181: 

F = C ( l (x ,y ) -~@.q) )~  
X Y  

where I(x,y) is the image, R is the reflectance function, 
p = ~ z ( u ) / ~ x ,  q = az(u)/dy and z(u) is the surface. 

We show results for a synthetic image with Lambertian 
shading for various amounts of added gaussian noise (Fig- 
ure 1). Figure 2 shows samples from scale space for the 
noiseless synthetic image. Recovered surfaces are also 
shown for real scanning electron microscope (SEM) images 
of a cylindrical fibre and an SEM sample grid (Figure 3). 

No noise added KI.LL crcd 

20% added noise Kccovcrc< l  \url,lcc l2I l ' r  r1111se) 

Figure 1: Recovered surfaces for synthetic images 

In ihe stereo surface reconstruction problem, the best Figure 2: Samples from scale space 
match is first found for each surface point using 3-by-3 tem- plate matching, after which probability estimates for these 



Figure 5: Recovered surface 
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Figure 3: SFS recovered surfaces for SEM images 
matches are found by applying Rayes' rule. This leads to the 
maximum likelihood estimator for the surface: 

where D takes the height of a surface point and calculates 
its dispprity, d(x,y) is the disparity of the best match for the 
surface point, and s(x,y) is a confidence estimate for the 
match. Figure 4 shows a stereo pair of SEM images of cylin- 
drical fibres, and Figure 5 shows the surface recovered by 

Figure 4: Stereo pair of SEM images of cylindrical fibre 

SUMMARY 
We have described a general method for reconstructing 

the scale space representation of a solution to an ill-posed 

inverse problem. The method builds the scale space from 
gaussian basis functions, which allows smoothness to be 
controlled in a natural way without adding extra terms to the 
objective function. The algorithm first finds an approximate 
solution at a large scale which it then tracks through scale 
space by making small deformations that reduce the objec- 
tive function with minimum loss of smoothness. Noassump- 
tions are made about the form of the objective function and 
no blurring of the input data is required. 
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