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ABSTRACT   

In8tatisticalpatteTnTeCOgnition，tbeI）ayesmskservesas  
areLbrence－allmitofexcellencetha．tca．nnotbesurpassed．  
h thispaper，We8howthat by relaxingthe assumption  
thattheinputbe8a．mpledonlyonce，a．ClassiRcation8yS－  
temc礼nbebtlilt thatbea，t8the Ba，ye＄errOrbo11nd．We  
presenta．detai1eda．nalysisofthee鮎⊂t80frepeatedsa．m－  
pling，incl11dingproof岳thtitalway8yieldsa．netimprove－  
mentinrecognition＆CCuraCyforcommondistribution＄Of  
interest．tTpperandlowerbound80nthenetimprovement  
areal＄Odi＄Cu8＄ed．Weconcludebygivingprehminaryex－  
periment山re8ult8thatill116tratetheappucabilityofthis  
approacll．  

INTRODUCTION   

Afundamentalprobleminpatternrecognitiomi8tOtake  
a．nunidenti負edobjectandassociateitwithoneofasetof  
Pre－de丘nedclasse8aCCOrdingtothemeasurementofsome  
numberofitsphy8icalattrib11te＄．Itisweuhownthatthe  
errorrateforany8tatisticalclassi負erbasedona8PeCi負c  
COueCtion ofattrib雨es，Or♪αね柁∫eいslower－bo11nded  

bytheBa・ye8Ri8k［1，3）．Inthispa，per，WeShowthatby  
rela3Qngaba8icas8umPtion－thattheinputbesampled  
Onlyonce－aCla＄8i負cationsy雨emcanbebu肌tllatbeats  
theBayeserrorbound．Thisre餌Itisnotjustatheoreti－  
Calcuriosity，buta，PpeaJStOhavepra，Cticalapphcationsin  
reaトworldrecognitionproblem8．   

According to the Bayes theorem，the design ofa sta－  

tisticalcla＄Sifieri8dictatedbythecharacteristicsofthea  
P710riclassproba．bilitie＄a．ndbytheconditionalprobabihty  
di8tributionsofthemeasuredfbat11reSforeachclass．Once  

thedistrib11tionsoftheserandomvariablesareknown，the  
OPtimalclassi£cation boundaries are determined by the  

Baye＄deci＄ionru1e．Error8a．risewhen the distributions  
brdifhrentclas5e80Verlap（e・g・，Figu∫el）・Intbetradi－  

tionalcase，8Ⅶ⊂h mi8ta・ke8areⅦmaVOidable；the classi負er  

is“optimal”intheBen8ethatitminimizesthisbaseerror  
rate．  

Inapreviouspaper，Weimtroducedamethodologythat  
red11CeStheresidualerrorrateinopticalcharacterrecognl－  
tion（OCR）by8amPhgtheinputrepeatedlyandcombin－  
ingthereBultBthroughanovelvotingscheme［6】．Weob－  
servedthatbetween20％and40％oftbeOCReTrOrSWere  
eliminated when we8imply scanned apage three times  
andappliedconsen8tL88equeneetlOtingontheoutputfrom  

apartic山arOCRpackage．Ⅵk8peCulatethatwhemtbe  
perfbrmanceofarecognition proce88iさVery九igb（叩リ  
99％orhigher），aSigni負cantportiorLOftheremaininger・  

ror8arisefrom“Ⅶnlucky”randomfhctnation8intheinp山  
data．Intbjspaper，WepreSent aゎーma18naly8i80ftbi8  

e鮎ct，8bowingthatbetterperゎーmanCe－beyondtbelimit  
OftheI】aye8e汀OrboⅦnd－Ca．nbeachievedbyexploiting  
the smallvariation8inherentin observed meastlrement8．  

Wealsopresentpreliminaryexperimentalremlt＄thatil－  
1u＄tratetheappucationofthisapproachto＆＄Pe⊂i負cprob－  

1emin machineVision．  

PRELIMINARIES   

A pattem recognition8yStem Can beviewed aB COn8ist・  
lngOfthreeparts：aSetOfpatterncla＄6e8，anOb8erYation  
SpaCe，a・nd adecision mecha．nism．Pa，tternCla且8e8rePre－  

8ent a・bstract categories from which object8are drawA．  

Examplesinclude symboIs over a givenalphabet（e．9・，  
（a，b，C，．”）），editing gestures madewith＆pen，COmpO－  

nent＄tObeassembledbyarobot，etC．WedenotetheBet  

Ofpatternclasses8はC＝（Cl，Cユ，‥リC爪）■Tbeob8erVむ  

tion叩aCe，dsoabstract，i8aYeCtOrX＝（ズ1，ズI，‥■㌦）  
representinginfbrmation thtcanbeextractedftomob－  
ject8（e・g・，COlor，teXtu∫e，1ength ofa8nb由ucture，an－  

gle ofa curve）・恥r a8peCi負cin8tanCe Ofan object，  
Ⅹ＝（ヱl，ヱ2，…，〇れ），エi∈苅，rep托8ent8the8etOfⅦ山e8  

Ⅹtakeson．Duringtherecognitionproce58，theseq11anti－  
tiesaremeasured，anda．clas＄aSSlgnmentiBmadebythe  
decision mecha．nism．  

Inreality，itisnotpossibletodeterminea＄ingle，‘‘true”  

ねatⅦreVeCtOrXbranobject．Rather，Ⅹi88ampledYiaa  
StOCha．sticprocess．In80meSenSe，theinnatevaluei8hid－  
denftomdirectobserva，tion．Forexample，甲eknowtht  
botbau£ddsaJe8ⅦppOSedtobelOOyard5long．Hence，if  
ズ1＝JeI叩仏i5a長atureofinterest，thenwewoⅦ1dexpect  
〇1＝Jββyα通ゎrapaJticnlarfbotban負eld．However，in  

thecaseofrealbotbau丘dds，Wearelikelyto8eea陀ries  
Ofshghtlydi鮪rentvahes，eVenWhenmea8uringthesame  
負eldtwice．Hence，anyaSSeSSmentOfXi5inevitablyem・  
beddedinsomerandomness，and therecognition＄yStem  
CanOnlyobtainanapproximationofthevaluex．   

Tbmakethisdistinctionclear，WeemPloy“hat”notation  

文＝（孟1，孟2，…，怠れ）todesignatetbeob8erYation＝eturned  

bythestochaBticproce＄S．Intheexa，mpleabove，Wemight  
have£1＝Jβ仇Jydnb，タク．7ydmb，Jβ仇gyα通，…，揖a  
SuCCeSSionofmea5urementS．The8etOfal1possible文’si8  
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denoted by X. We further let M represent the stochastic 
process. For a given object 7 with innate feature vector 
x, each output from M is a random vector defined on a 
probability space by the conditional probability: 

P t ( X  = k 17) = P r ( X  is measured as 5i I r ) ,  (1) 

or the corresponding probability density function 

PM(? 17). 
In this paper, we model the observation process for a 

given class as an additive perturbance x = X + N, where 
N represents random "noise." We denote the probability 
density function governing the perturbance as pN(b I C;), 
and let p(x I C;) signify the probability density function of 
the hidden random vector X ,  taken over all objects in class 
C;. The distribution of x is described by the conditional 
probability density function p(jc I C;). In the following dis- 
cussion, the term hidden distribution refers to  p(x I c;), 
the term primary distribution refers to  p(k I C;), and the 
term secondary distribution refers t o  pM(jc 17). A sample 
is the outcome of an observation process, while repeated 
sampling refers to  observations made of the same input. 

i6 Decision boundav 

* 
Secondaty distributions (iJ Always right 

(all wstances of Class A) @ Right through voting 
@ Wrong through voting 
@ Always wrong 

Figure 1: Primary and secondary probability distributions 
for a two-class recognition problem. 

When only a single observation jc for a given object 
is used, the decision rules are determined by the condi- 
tional probability functions p(k I C;) for all classes C; E C. 
The rules that minimize the overall expected error rate 
are known as the Bayes decision rules. We use Pr(c  1 C;) 
to represent the mis-classification rate for class C;. The 
Bayes risk is a weighted average of the mis-classification 
rates for all classes: P. = Pr(6  1 C;)P(C;). Note 
that the Bayes risk is the smallest error rate possible for a 
given feature set under the indicated observation process. 
In traditional classifier theory, any improvement beyond 
this requires changing the feature set and/or the observa- 
tion process. Even if it were possible for the observation 
process to  be perfect (i.e., noiseless), mistakes might still 
be inevitable: two objects from different classes possessing 
the same innate feature vector x are effectively indistin- 
guishable. We call such errors the intrinsic errors of a 
recognition system and its associated feature set. 

AN APPROACH FOR BEATING 
THE BAYES BOUND 

In Bayes classifier design, the discussion is centered on 
"single use" decision situations. That is, a single obser- 
vation is made of an input and then a decision is reached 

based on that observation. The premise of our technique 
for improving on the Bayes bound lies in the fact that the 
underlying physical attributes of an object can be sampled 
more than once (e.g., a page of text can be scanned several 
times). Since the measurement of a field datum is a ran- 
dom variable, the outcome of each sample is potentially 
different. 

For purposes of illustration, suppose we have two classes, 
A and B, with conditional probability distributions as 
shown in Figure 1. The Bayes decision boundary is 
k = (so) .  Now assume that  we are presented with a par- 
ticular instance a from class A, and that  the measured fea- 
ture has a secondary Gaussian-type distribution pM(k I a )  
with mean pa. It is clear that  if p, lies close to  the deci- 
sion boundary, a given observation k may fall on the wrong 
side, resulting in a classification error. The probability this 
event happens is jzT pM(k I a) dk. 

However, if several measurements are taken, the major- 
ity of them should fall on the proper side of the decision 
boundary (see case (2) in Figure 1). In other words, recog- 
nition is made more reliable in spite of individual failures 
by taking the consensus of repeated samples of the in- 
put. Conversely, if the mean falls on the wrong side of the 
boundary, pa > zo, the voting scheme may actually do 
more harm than good (case (3) in Figure 1). Intuitively, 
though, it should be evident from the shape of the pri- 
mary distribution for class A that this approach is likely 
to  work more often than not. In the following sections, we 
show that there is always a net improvement in recognition 
accuracy for common distributions of interest. 

Analog signal (image) - A 

Sampling variation 

Error region 

A 

Figure 2: Pattern recognition using repeated sampling. 

Figure 2 presents an overview of the approach. Note 
that the classifier in the figure is still limited by the Bayes 
bound. However, the performance of the system as a whole 
can be better than this, as we have noted. To demonstrate 
this more concretely, we performed a simulation of the 
two-class problem illustrated in Figure 1. We chose means 
for the secondary distributions based on initial Gaussian 
distributions with p~ = -2.0, p~ = 2.0, and u = 1.0. 
We then generated observation samples using secondary 
Gaussian distributions with o's of 0.10, 0.20, and 0.30. As 
shown in Figure 3, the voting system's advantage over the 
"optimal" classifier ranged from 1.13% to  16.02%. The 
Bayes Risk in the simulation varied between 0.0023 and 
0.0028, corresponding to  initial recognition accuracies of 



99.72% to 99.77%. These results seem consistent with the 
experimental OCR data, cited earlier, that originally mo- 
tivated our investigation. 

Figure 3: Simulation results showing the effects of re- 
peated sampling. 

Samples 
(Voters) 

ANALYSIS I - GAUSSIAN NOISE 
DISTRIBUTIONS 

Improvement Over Bayes Risk 
a = 0.10 1 a = 0.20 1 a = 0.30 

In this section we present a theoretical analysis of the im- 
provement in the error rate achieved by repeated sampling 

11 

for a particular class of noise distributions: the pertur- 
bance is independent of the hidden distribution p(x I Ci) 
and has a probability density function that is a zero-mean 
Gaussian. 

Again, a two-class, one-dimensional problem is consid- 
ered. Let p(x 1 A) and N(O,aA) denote the probability 
functions for the hidden and noise distributions for class 
A, and p(x I B )  and N(0 ,  aB) denote the hidden and noise 
distributions for class B, respectively. With no loss of gen- 
erality, we assume that the Bayes decision boundary be- 
tween the classes is located at  f = 0. Thus, the classifier 
assigns label A to  an object i f f  is less than 0; otherwise 
the label B is assigned. 

For a particular object a E A, say that the hidden value 
of X is x,. Then the probability that a single sample falls 
in the region f < 0, denoted P,, is 

0 -(*-x.13 L e  " d f  P, = Pr(x, + N < 0) = - 
&a m 

and the probability that f > 0 is, of course, 1-P,. We say 
that object a is correctly recognized by the Bayes classifier 
with probability P,. 

It is obvious that if x, < 0, then Pa > 0.5. Now suppose 
that 2m + 1 independent observations of a are made. The 
probability that a majority of them fall on the side k < 0 
is characterized by the equation: 

for m = 1,2, .  . .. It is easily demonstrated that @(P,, m)  > 
P, whenever 0.5 < P, < 1. Consequently, if majority vot- 
ing is used, there is an increased chance a will be classi- 
fied properly. Moreover, the probability that a is correctly 
recognized can be shown to approach 1 as m -, w. This 
result implies that if we have x, < 0 for a given a, voting 
can lead to perfect recognition, whereas the Bayes classi- 
fier makes an error with probability 1 - P,. Over all a's, 

the asymptotic improvement voting can bring about for 
class A is 

m -ek$ 
C(A) = J O  p(x 1 A) [&l e ' I  dji dx (2) 

-m I 
On the other hand, if the hidden value lies on the wrong 

side of the decision boundary, x, > 0, voting is likely to 
produce the incorrect answer, while the Bayes classifier 
might recognize a correctly (i.e., if the observation f hap- 
pens to land on the right side, f < 0). The probability 
this kind of "cross-over" occurs is 

Since F, < 0.5, we have @(p,,m) < pm, hence voting 
decreases the chances of a being properly classified. 

We refer to the situation where the Bayes classifier is 
right but voting returns the wrong result as voting damage. 
The overall damage induced by the voting scheme is upper- 
bounded by 

D(A) = imp(. 1 A) [l J O  e-? df] dx (3) 
&a -00 

The net asymptotic improvement in recognition accu- 
racy, A(A), is then defined as the difference between Equa- 
tions (2) and (3): 

This can be expressed as 

where 
2 = 

erf(z) - J e-ta dt 
6 0 

See [7] for further details. 

PROPERTIES OF A(A) FOR 
GAUSSIAN NOISE 

In this section, we present two theorems regarding the net 
improvement in recognition accuracy, A(A). The first ex- 
presses A(A) as a function of the Bayes and intrinsic error 
rates. The second shows that A(A) > 0 (i.e., repeated 
sampling always reduces the number of errors) for com- 
mon hidden distributions of interest. 

Theorem 1 Let N be a Gawsian noise process. The net 
improvement A(A) due to repeated sampling equals the 
Bayes mis-classification mte minw the intrinsic error mte 
of the recognition process: 

Proof: Owing to space limitations, we refer the reader 
to [7] for the proof of this theorem. 

This theorem implies that when the hidden distributions 
for classes A and B are separable (i.e., if J,"p(x I A) = O), 
A(A) equals the Bayes Risk. In other words, we achieve 
error-free recognition for class A. 
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Figure 4: Net improvement in recognition accuracy, A(A). 

Theorem 2 Let N be a Gawsian noise process. For com- 
mon hidden distributions of interest, repeated sampling al- 
ways yields a net improvement in recognition accuracy. 
That is, A(A) > 0. 

Proof: The proof is divided into three cases. First we 
show that the theorem is true for all "bell-shaped" (e.g. , 
Gaussian) distributions. Then we prove that the result 
holds for arbitrary distribution functions under certain 
reasonable conditions. 

Case 1 - Bell-Shaped Distributions. 
A bell-shaped function f (x )  is a non-negative function 

satisfying the following property: f (x l )  > f(xz) if 1x1 - 
pI < Ix2 - P I ,  where p is the highest (extreme) point of the 
function. Now, suppose distribution function p(x  1 A) is 
bell-shaped with p < 0. Then we have I - x - pI < Ix - pl 
for all x > 0, hence p(-x I A) - p(x I A) > 0. From the 
definition of the error function erf(z), it should be clear 
that 1 -erf ( x / ( r n d ) )  is positive for all x > 0. Therefore, 

A(A) > 0. 

For the other two cases, we need to  assume the following: 

The term J!, p(x I A) dx  corresponds to  the density of the 
intrinsic value X in the interval [-c, 01, the neighborhood 
of size c to the left of the decision boundary (i.e., inside 
the region for class A). Similarly, the term &p(x I A) dx 
is the density of X in the interval [0, c], the same-sized 
neighborhood to  the right of the decision boundary (i.e., 
outside the region for class A). The condition states that 
the density of X is always higher on the correct side of the 
boundary than on the incorrect side. Intuitively, we can 
see why this should be necessary: otherwise "cross-overs" 
(e.g., case (3) in Figure 1) will happen more frequently, 
meaning voting may do more harm than good. 

Case 2 - Finite Support. 
Suppose that the hidden distribution p(x I A) has finite 

support. That is, p(xl  A) = 0 for all 1x1 > R, where R 
is a fixed positive value. This is a reasonable assumption 
since real-world systems are finite. In this case, A(A) can 
be written as 

By the Mean-Value Theorem, there exists a value 0 < w < 
R such that 

Since our assumption implies that J,'p(-xl A)dx - 
G p ( x  I A) dx > 0 for all c > 0 (Equation 5), we have 
A(A) > 0. 

Case 3 - Infinite Support. 
Lastly, we consider the case where p(x I A) has infinite 

support. We first show that repeated sampling performs 
no worse than the original classifier (i.e., A(A) 2 0). 

Consider the sequence of real-valued functions f l ,  ji, . . . 
where 

Obviously, we have lim f,,, = A(A). Again, from the 
m-m 

Mean-Value Theorem, we know that for each fm there 
exists a value 0 < wm < m such that 

1 
I m  = 5 /o M-xIA)  - P(XI A)Idx 

Thus, using Equation 5, we have fm > 0. Therefore, 
A(A) 2 0. 

Finally, we can show there is always a net improvement 
(i.e., A(A) > 0) if we make one more assumption: for any 
given u ~ ,  there exists at  least one real value r > 0 such 
that 

When this is the case, A(A) can be written as 

where 

From Equation 5 we know that 3, > 0. Hence A(A) > 0. 

It can be demonstrated that the final condition is satis- 
fied by most hidden distributions of interest [7]. 

ANALYSIS I1 - ARBITRARY 
SYMMETRIC NOISE 

DISTRIBUTIONS 

The two theorems in the previous section can be extended 
to  more general classes of observation perturbances. In 
fact, Theorems 1 and 2 remain true for any noise process 
with a symmetric probability density function pN(k 1 A) 
that is independent of the hidden distribution. 

T h e o r e m  3 Let N be a random noise process with a sym- 
metric distribution function pN(k I A) independent of the 
distribution of X. The net improvement A(A) due to re- 
peated sampling equals the Bayes mis-classification rate 
minw the intrinsic error mte of the recognition process: 



Proot: The proof is similar t o  the proof of Theorem 2. 
The details are given in [7]. 

Theorem 4 Let N be a mndom noise process with a sym- 
metric distribution function pN(k I A) independent of the 
distribution of X .  If the following two conditions are sat- 
isfied: 

1. For all c > 0, 

2. For any given pN(Z 1 A), there ezists at  least one ma1 
value r > 0 such that 

then repeated sampling always yields a net impmvement in 
recognition accumcy. That is, A(A) > 0. 

Proot: The proof of this theorem can be found in (71. 

BOUNDS ON A(A) 

In this section, we provide estimates for upper and lower 
bounds on the net improvement in recognition accuracy, 
A(A). We start by giving a very general upper bound in 
the case that pN(k I A) is fixed and symmetric. 

Theorem 5 For any fized symmetric density function 
P N ( ~  I A), A(A) 5 i. 
Proof: The proof of this theorem can be found in [7]. 

One scenario where the maximum A(A) is achieved 
arises when the distribution of the hidden random vari- 
able X  is an impulse function centered very close to the 
decision boundary, i.e., at  x = Zo - 6. It can be proved 
that as r + 0, we have A(A) + 0.5. 

When both pN(Z I A) and p(x I A) are Gaussian distri- 
butions, a lower bound can be shown. Suppose N(0, uA) 
and N(-p,  us) are the densit? functions for pN(k 1 A) and 
p(x I A), respectively. Since X  = X  + N  is the sum of two 
independent Gaussian random variables, it follows that x 
is also a Gaussian random variable with mean E { X + N )  = 
-p  and standard deviation D { X  + N )  = 4 + $. In other 
words, 

Assuming the Bayes decision boundary is k = 0, by The- 
orem 1 we can write A(A) as 

where erfc() = 1 - erf(). 

When p and us are both fixed and the perturbance Q 

is small, i.e., a g: us, the expression can be expanded as 
Taylor series a t  -Ij and we obtain: 

e 1 

Figure 5 shows the lower bound as a function of Q com- 
puted at  us = 1.0, p = 2.0 (solid curve). The actual net 
improvement due to repeated sampling when there are 50 
voters is shown as the marked curve in the same figure. 
For small a, the bound is quite tight. 

- actual improvement ++ 

Figure 5: Net improvement in recognition accuracy, actual 
vs. lower bound. 

EXPERIMENTAL RESULTS 

In this section, we present some preliminary experimental 
data that demonstrate the applicability of repeated sam- 
pling. 

As we noted previously, our OCR results show that a 
significant percentage (i.e., 20-40%) of the residual errors 
in an otherwise accurate system can be corrected through 
repeated sampling. The extent to which this approach 
can help with other recognition problems is a subject we 
are currently investigating. Here we describe some early 
results that illustrate the degree of random fluctuation in 
the input data to a simple machine vision application. 

The problem we have chosen to  examine is deciding 
whether a given coin is showing heads or tails. This is 
a relatively challenging recognition task due to the highly- 
reflective, sculpted surface of the coin (a  U.S. 1 cent piece, 
in our case). Figure 6 gives one of the test images from our 
experiments. Our goals are two-fold: (1) to verify the in- 
herent randomness of the input process, and (2) to test the 
usefulness of repeated sampling in a real, albeit contrived, 
application. 

Since our focus is on repeated sampling, we have elected 
to use a fairly "generic" recognition procedure. First, 
a segmentation algorithm based on morphological opera- 
tions is employed to break the image into subregions con- 
taining individual coins. Once the coins are identified, we 
compute from each image a set of moments as described 
in [5]. This set is invariant with respect to size, position 
(translation), rotation, and reflection. The moments are 
taken as our features and provided as input to a simple lin- 
ear classification algorithm. In a preliminary experiment, 
we used 120 coin images (60 heads and 60 tails) as a train- 
ing set, and then tested using a different set of 240 coin 
images (120 heads and 120 tails). The overall recognition 
rate was 87%. 



Figure 6: Sample image of 12 coins. 

To see the effects of the perturbance induced by the 
imaging process, we sampled each coin three times. These 
three snapshots were taken in rapid succession using a 
Panasonic GP-MF200 camera without changing any set- 
tings or moving the coins. For each coin, we computed 
the mean of the feature vectors extracted from the three 
snapshots as well as the maximum variance between the 
mean and the vectors. Figure 7 shows the results calcu- 
lated from the first two moments using 30 coins randomly 
chosen from the test set. Each circle represents the max- 
imum feature variance for a particular coin. The straight 
tine running through the plot is the decision boundary used 
by our classifier. As the figure illustrates, the three snap- 
shots yield significant variation in the computed feature 
vectors; of the 25 coins represented in the region depicted, 
five cross the boundary. The potential impact on recogni- 
tion results, especially for feature vectors near the decision 
boundary, is quite clear. 

Figure 7: Feature variation under repeated sampling. 

CONCLUSIONS 

Whiie our approach to  improving recognition accuracy 
makes use of voting, it is fundamentally different from 
research on combining the outputs of multiple classifiers 
(e.g., [2, 41). Repeated sampling employs just a single 
classifier, and hence enjoys an attractive property: since 
there can only be one optimal classifier for a given set of 
distributions p(C,) and p(ilC;), there is no need to  "com- 
promise" by incorporating less-than-optimal recognizers in 
the voting process. 

Finally, in this paper we have treated the basic classifier 
as a "black boxn (e.g., in Figure 2). This has the advantage 
of generality. However, when we know the structure of the 
feature vector used as input, there is another, straightfor- 
ward way to  apply repeated sampling and "voting" prior 
to the classification step. If, for example, the observation 
noise is additive with zero mean, i.e., i = x + n, we can 
build a system that simply takes the average a over a set 
of successive measurements (8;). and use the average 2 
as the input to  the classifier. Averaging smoothes out the 
noise in the observation process; it is easily shown that 
P (  lim a = x) = 1. We are now beginning to  examine 

m-m 
the tradeoffs between these two approaches to repeated 
sampling. 
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In classical pattern recognition, the Bayes Risk serves as a 
reference - a limit of excellence that cannot be surpassed. 
In this paper, we have shown that by relaxing the assump- 
tion that the input be sampled only once, a classification 
system can be built that beats the Bayes error bound. 




