
MVA'94 IAPR Workshop on Machine Vision Applications Dec. 13-15.1994. Kawasaki

Generation of a Position Tolerant Representation of Edges

B. Mertsching' and J. Schnusenberg
University of Hamburg

Department of Computer ScienceIAG IMA
Vogt-Kolln-Str. 30, 22527 Hamburg, Germany

S. Neusser and T. Schwederski
Institute for Microelectronics Stuttgart

Allmandring 30A, 70569 Stuttgart, Germany

Abstract
Within the SENROB-project2 (sensor driven robot-vision
system), a robot-supported image analysis system has been
developed that is able to recognize arbitrarily oriented and
positioned workpieces with the help of a camera mounted
on a gripping device. To achieve a high recognition rate
even in case of lateral displacements, e.g. fovealisation
failures, a position tolerant representation of edges, called
edge clouds, is used. This approach is motivated by simil-
ar processes in the visual system of animals. The real-time
use in a robot system and the complexity of the algorithms
require the implementation of a massively parallel VLSI
system.

The entire task can be subdivided into two parts: In a first
step, the system extracts oriented edge elements from the
preprocessed image, which will be used to calculate the
edge clouds. The second step, the generation of edge
clouds, consists of the detection of continuous edges in a
window and the generalization of these sequences with
respect to their orientation. Two methods for generating
edge clouds are conceived and proper VLSI architectures
for their implementation3. A hierarchical and a border
oriented approach are presented in this paper.

1 Motivation
The generation of a position tolerant representation of

edges is motivated by the increase of robustness in the
subsequent recognition process. In this paper, we describe
a very effective representation of contours in gray scale
images and their hardware realization. Our work aims at a
robust, real-time robot-vision system (SENROB) in which
we have incorporated neurobiologically influenced meth-
ods to achieve orientation and distance invariant object
recognition.

In our system, color images are grabbed via a camera

2 Supponed by the Federal German Ministry for Research and

Tecllnology (BMIT), grant 413-5879-01 IN IOSICS, the pmject
is led by Pmf. Hanmann. University of Paderbom. Germany

mounted at the hand of a robot. We use special focussing
techniques to localize objects in the scene and sample
them subsequently by an artificial retina which is a special
form of logarithmic retinae.

Thereby, a selection of ring shaped representations from a
superposition of differently scaled logarithmic retinae
results into four spatial frequency channels. In these im-
ages, several features as e.g. edges, coloured regions, and
higher characteristics are extracted and serve - combined
with orientation information derived from the retinal struc-
ture and easily available distance information -as input for
mapping processes producing normalized object represen-
tations which are presented to an associative network. By
these means, once learnt objects can be recognized, while
unknown ones are learnt. A detailed description of the
system is out of the scope of this paper; we refer to
[Hartmann 1994, Mertsching 19941. Here, we concentrate
on the representation of edge features and their generation.

Our space-variant system uses foveal sensing which is
advantageous due to a wide angle field with a high resolu-
tion in its center and decreasing resolution towards its
periphery. Unfortunately, slight focussing errors cannot be
excluded. The feature 'coloured region' is resonably insen-
sitive to this kind of error (and thus not regarded in this
paper), but not the contour features. This leads to a posi-
tion tolerant representation of edges and corners.

2 Contour Representation
The gray scale spatial frequency channels are mapped to

a layer of artificial on-center (c) and off-center (C;)
neurons. They are created by center-surround coupling and
their activity patterns are evaluated by a layer of simpli-
fied edge detector neurons.

neumnr w ~ l h mal l
recept~vc l~clds id)

m p l e r neurms nlh
luge rmeptl~c fieldr

Fig. 1: Generation of clouds of oriented edge ele-
3 ments in order to deal with displacements

Supponed by the German Research Association (DFG), grant ME
128911 and SCH 57511

Their representation, similiar to the cortical representation

done by simple neurons in the primary visual cortex of
cats (compare [Hubbel 19591) provides "strings of oriented
elements" (Fig. la). Previous work on the VLSI-
implementation of the edge detector level was published in
[Bilau 19931 and was slightly modified later. The
generated strings are extremely sensitive to lateral
displacements . For this reason, we generate a
representation sirniliar to that by complex cortical neurons
(Fig. lb) which have distinctly enlarged receptive fields.
Sets of artificial complex neurons with differently oriented
receptive fields are assigned to each pixel of the channels.
Due to the large sized receptive fields, a piece of contour
activates a "cloud" of correctly oriented neurons assigned
to neighboring pixels. In spite of unavoidable displace-
ments of the edge clouds between learning and recogni-
'ion, we can obtain high similarity measures. More about
this layer can be found in [Hartmann 1990 a/b/c, 19911.
The hardware implementation of the complex neurons has
been investigated recently. While the Paderborn group has
applied a hierarchical approach to the problem, the Stutt-
gart team has used a border oriented one. Both approaches
are presented in chapter 3 and 4.

Shifted grids I Sl
Oriented edge elements
DS 1 1

Fig. 2: Tighter generation of edge elements

3 Hierarchical Algorithm for Position Tolerant
Edge Representation

The generation of position tolerant edge detectors is
based on the generation of the oriented edge elements
related to the simple cells. These are generated for islands
of 7 pixels on a hexagonal grid and positioned at every
second pixel of an image. To gain a position tolerant edge
representation, a two step procedure is applied. In a first
step, the density of edge elements has to be extended. As
the detection uses every second pixel, the extension to

every pixel leads to a tight representation of an edge
sequence. A continuity check and generalization produce
further redundancy, therefore wider edge clouds and re-
sults in higher robustness of the processing in the sub-
sequent associative netzwork. The next two paragraphs
describe the two step procedure using a horizontal edge
sequence as an example.

I C l DS1 I

L I
Fig. 3: Continuity check

3.1 Positon Tolerant Edge Representation by Tight
Sampling

The first step of the generation of position tolerant edge
representations is a tighter setting of the edge elements.
Now every pixel of an image can possess such elements.
The resulting strong overlap of the islands is motivated by'
the fact that the same structure is found by the receptive
fields of the simple cortical cells. This generation of re-
dundancy enlarges certainly the robustness of the recog-
nition process, but the continuity check and the generaliza-

tion will improve the results furthermore. Fig. 2 explains
the procedure in detail. Starting from the grid SI as
reference, the grids (S2-S4) are shifted by one pixel. One
gains four data structures (DSl-DS4) with oriented edge
detectors. Superimposing the results of the four data
structures, the width of the simple edge sequence is
doubled.

3.2 Position Tolerance by Continuity Check
The generalization of edge sequences by a continuity

check has two purposes: on the one hand, short edge se-
quences that originate from interferences and that have no
significance for the recognition process, are suppressed.
On the other hand, the continuity check expands the edge
clouds further. As we use a hexagonal grid, the continuity
check works within a hexagonal window covering seven
islands (Fig. 3). One condition for the continuity check is
that a continuous edge sequence has to pass the window.
If this condition is fulfilled a generalized edge element is
assigned to the central pixel of the window.

According to the tight sampling, the window for the conti-
nuity check is placed on four different island positions.
This procedure of continuity check is executed for the
data structures DSI to DS4. In this way, 16 separate data
structures are built up. This algorithm can be used itera-
tively to get clouds of oriented edge elements with an
arbitrary width.

4 The Border Oriented Algorithm for Position
Tolerant Edge Representation

In the border oriented approach, detection and generaliza-
tion of edge sequences in the vicinity of the central pixel
will be performed in a single step.

old new
subwindow subwindo

...-. old - new subwindow

Fig. 4: Subwindow of the border oriented approach
shifted by one edge element. The new
additional row of edge element information
is shaded.

The approach is based on to the fact that moving the
observed subwindow by one border element in horizontal
or vertical direction will add only a small amount of new
information to the existing data. Results of former opera-
tions can be stored and used for the evaluation of the new
subwindow (Fig. 4).
The approach reduces the evaluation complexity from
O(n2) to O(n) edge elements and minimizes hardware cost

old new
subwindow subwindow

border new edge 3 border
elements \

old edges -? - continuations new edges,
1. edge element detektor of old edges

column vertical
continuation

elements new edges,
new edgq- continuations

Old edges detector of old edges
2. edge element

column vertical
. continuation

n. edge element - local - ...
column detector

I I
Fig. 5: Data flow of the border oriented parallel

algorithm. Only local operations are used to
search for edge continuations.

by using hardware the size of which increases linear with
subwindow dimensions. The decrease in hardware area can
be spent to increase the window size to the expected width
of the edge cloud, so that processing of the image in a
single run is enabled.

By applying this approach, the main task that has to be
performed is searching for new edges or continuations of
already detected edges in the added element row. Problem
analysis shows that for most edge sequences, a local
operating continuation detector is sufficient. Only vertical
extensions over one or more columns result in a global
information exchange. Even in this case, the information
exchange can be split into local column to column opera-
tions. Fig. 5 depicts the resulting algorithm. Each continu-
ation detection task works independent of its neighbors; it
is fed by local available data only and can be performed
in parallel. The results of each calculation cycle form the
basis of the following evaluation.

5 Architecture of the Robot-Vision System
Fig. 6 presents an overview of the SENROB system. The

whole process is roughly divided into the steps of pre-
processing, the logarithmic-polar transformation, the
generation of the laplacian image, the generation of orien-
ted edge elements and edge clouds, the continuity check
and a module for the data transformation and selection.
The last module contains the invariances and the associa-
tive network.

U 1 I U U U

Fig. 6: Architecture of the robot-vision system.

The modules for building the sampling window and for
the generation of edge detectors have been already real-
ized and integrated in a TIP-System (Transputer Image
Processing) from PARSYTEC. The hardware architec-

tures of these modules have been published in several
papers [Bilau 1993, Bilau 19941. Here, we focus on the
modules for the generation of the edge clouds.

For the huge amount of image data, a dataflow architec-
ture is well suited for this kind of application.
Constraints for the architecture are:

the processing time has to be independent of the
image data,
the time delays from image grabbing to object
recognition have to be as short as possible (delays
of severals images are not acceptable).

6 Realization of the Hierarchical approach
As in chapter 3 described, the hierarchical approach uses

at each level a processing window with a fixed size of
seven islands. At first, the cross pointers for the three
possible edge elements of the central island are generated.
The cross pointer is the number of an edge element in any
of the six neighboring islands, to which the central edge
element is connected to. Second, the edge elements of the
seven islands are combined and generalized to a new
element. Discontinuous edge sequences are suppressed by
this operation. Afterwards, the generalized edge elements
represent a longer edge sequence and are interpreted as the
data of an island for the next hierarchical level. Here,
again a window of seven islands is formed, the data is
combined and generalized to a new edge element.

6.1 Continuity Check Module
Fig. 7 illustrates the hierarchical architecture of the conti-

nuity check module without the controling units. The data
from the module for generation of oriented edge elements
is stored in a three rows wide FIFO buffer, the cross
pointer module starts and the results are buffered. The
subsequent module processes the generalized edge ele-
ments of the f is t hierarchy level. Again a row buffer is
connected to the output of the module. To build up the
edge elements at the next level, one has to connect four of
the generalization modules to the output of the row buffer.
The interweaved data structures of the first level must be
fed to these modules in a demultiplexed manner to fit to
the processing scheme of the hierarchical approach.

Fig. 7: Continuity check for two levels

6.2 Cross Pointer Module
The module (Fig. 8) generates the cross pointers for edge

elements in block A. To generate the cross pointers of the
edge elements in block A, the elements of the neighboring
islands are stored in the blocks R up to G in separate

pipeline registers.

Fig. 8: Cross pointer module

A connection network generates the cross pointers, which
are stored with the next pipeline clock in block Z. So at
every pipeline clock, the processing window is moved by
one island and the cross pointers are generated for the
block A.
I I

A = : Central Island

X=[B,C.D,E,F,C] Peripheral lsland \a a/ I
I I
Fig. 9: Connection network

Every pipeline block is designed to store three edge ele-
ments due to a maximum of three edge elements at an
island. To separate these, the connection network (Fig. 9)
for the crosspointers is used. The results are stored at the
next pipeline clock in the block Z.

6.3 Generalization Module
The cross pointer module as a preprocessing unit, builds

up the information for the central edge element to which
edge element in the neighborhood it is assigned to.
The next processing step is to combine these elements to
a sequence that is generalized to an element at the next
hierarchical level. This task is performed by the generali-
zation module. This time consuming task is mapped onto . .

two pipeline stages to allow an overlapping processing.

I . P ~ p e l ~ n e Stage 2. Pipeline Stage

I
Fig. 10: Islands

The input data is built by the data of three rows. The first
pipeline step eleminates the data of the islands C, E and
G and assigns the data to any of the neighboring islands
A, B, D and F, which possess additional comparators. To

achieve this, every edge element is applied sequentially to
a bus, that is connected to the comparators of the islands
A, B, D and F. If any of the comparators supplies a hit (a
connection exists), the corresponding edge element is
buffered into one of the island A, B, D and F. This pipe-
line step needs at least nine cycles to terminate. After-
wards; A, B, D and F contain edge sequences with up to
two elements.
1

I I
Fig. 11: Pipeline stages

The next pipeline clock buffers these sequences into the
second pipeline stage for further processing. Every island,
now labeled with L, M, N and 0 , obtains a comparator
logic. An extra register is provided to enable the combi-
nation of two edge sequences, that are buffered in the
same island. At least 12 cycles are required for this pipe-
line stage to terminate, because in the worst case 12 edge
sequences have to be stored in these blocks. Now, the
generalized edge element can be loaded into the subse-
quent row buffers.
I i

I edgesequence

7 Realization of the Border Oriented Approach
The successful partition of the problem suggests a VLSI

architecture as the second approach based on the conse-
cutive transmission of edge data at the subwindow border
through an dedicated unidirectional interconnection net-
work. Hereby, an effective evaluation of edge sequences
and a high degree of parallelism is obtained. As can be
seen in Fig. 12, various hardware aspects are applied to
implement the algorithm. Thus, the inputs and outputs of
the interconnection network correspond to possible spatial
entry and exit points of edges in the new edge element
row.

The switching elements represent the column positions of
edge elements. Their configuration is determined by the
data of the edge elements and reflects the actual edge
continuation. The interconnection net is duplicated to
handle the left or right hand sided flow of edge sequences
simultaneously. One transmitted data bit indicates this
direction. Other transmitted and received data are used to
identify each edge sequence uniquely. The ordered sequen-
ces are stored in a first-in first-out memory (FIFO) and
the medium orientation is calculated incrementally.

8 Summary
In this paper we have presented two algorithms for the

generation of a position tolerant representation of edges,
which are currently investigated. The hierarchical approach
can be cascaded to get a position tolerant representation of
edges with an arbitrary width. The border oriented ap-
proach minimizes the hardware costs, which increases in
a linear manner with the window dimension. Both ap-
proaches have to be examined in detail to decide, which
one fulfills the constraints of processing time at a mini-
mum of hardware costs.

interconnection
network I

9 References

[Bilau 19921
Bilau, N.; Schnusenberg, J.; Ein schneller Codiemngspro-
zessor fiir ein System zur echtzeitnahen Generierung des
Hierarchischen Strukturcodes (HSC) mit Schnittstelle zum
Erkennungssystem PANTER. In: Fuchs, S.; Hoffmann, R.
(ed.): Mustererkennung 1992. Informatik aktuell. Berlin u.
a. (Springer Verlag) 1992, pp. 310-3 15

Fig. 12: Edge continuation situation at the window
border and corresponding configuration of
the interconnection network. E, and A,
label possible entry and exit points of edges
or inputs and outputs of the network, res-
pectively. The shaded circled points indi-
cate data bits in the edge elements that are
used to configure the switches for vertical
interconnections.

[Bilau 19931
Bilau, N, Schnusenberg, J.; Hartmann, G.; Siggelkow, A.;
Schwederski, T.: A VLSI-Processor for the Generation of
the Hierarchical Structure Code in Real-Time. In:
Bayoumi, M. A.; Davis, L. S.; Valvanis, K. P. (ed.):
CAMP '93: Computer Architecture for Machine Percep-
tion, New Orleans, 1993, pp. 67-76

[Mertsching 19941
Mertsching, B.; D N ~ , S.; Hartmann, G.: Robot Vision
System-Learning and Recognizing Arbitrarily Located
Objects from Different Camera Positions. In: Tanik, Murat
M. (ed.): Computer Science and Technology, PD-Vol. 59.
1994, pp. 12-130

[Hartmann 1990al
Hartmann, G.; Driie, S.: Feature linking by synchroni-
zation in a two dimensional network. In: Caudill, M. (ed.):
Theory Track: Neural & Cognitive Sciences of the Procee-
dings of the International Joint Conference on Neural
Networks (IJCNN) 1990. Vol. 1, pp. 247-250

[Hartmann 1990bl
Hartmann, G.; Driie, S.: Self Organization of a Network
Linking Features by Synchronization. In: Eckrniller, R.;
Hartmann, G. and G. Hauske (ed.): Parallel Processing in
Neural Systems and Computer. Amsterdam u. a. (Elsvier
Science Publisher/North-Holland) 1990, pp. 361-364

[Hartmann 1990~1
Hartmann, G.; Driie, S.: Verification of Continuity, Using
Temporal Code. In: Proc. of the International Joint Con-
ference on Neural Networks (IJCNN), 11. San Diego 1990,
pp. 459-464

[Hartmann 199 11
Hartmann, G.: Hierarchical Neural Representation by
Synchronized Activity: A Concept for Visual Pattern Re-
cognition. In: Taylor, J. G. et al. (4.): Neural Network
Dynamics. London et al. (Springer-Verlag) 1991, pp. 356-
370

[Hartmann 19941
Hartmann, G.; Driie, S.; Dunker, J.; Krauter, K. 0.;
Mertsching, B.; Seidenberg, E.: The SENROB Vision-
System and its Philosophy. Accepted for Presentation at
the Int. Conf. of Pattern Recognition, Jerusalem, October
1994

[Hubel 19591
Hubel, D. H.; Wiesel, T. N.: Receptive Fields of Single
Neurons in the Cat's Striate Cortex. In: Journal of Physio-
logy, 148, 1959, pp. 574-579

