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Abstract 
Within the SENROB-project2 (sensor driven robot-vision 
system), a robot-supported image analysis system has been 
developed that is able to recognize arbitrarily oriented and 
positioned workpieces with the help of a camera mounted 
on a gripping device. To achieve a high recognition rate 
even in case of lateral displacements, e.g. fovealisation 
failures, a position tolerant representation of edges, called 
edge clouds, is used. This approach is motivated by simil- 
ar processes in the visual system of animals. The real-time 
use in a robot system and the complexity of the algorithms 
require the implementation of a massively parallel VLSI 
system. 

The entire task can be subdivided into two parts: In a first 
step, the system extracts oriented edge elements from the 
preprocessed image, which will be used to calculate the 
edge clouds. The second step, the generation of edge 
clouds, consists of the detection of continuous edges in a 
window and the generalization of these sequences with 
respect to their orientation. Two methods for generating 
edge clouds are conceived and proper VLSI architectures 
for their implementation3. A hierarchical and a border 
oriented approach are presented in this paper. 

1 Motivation 
The generation of a position tolerant representation of 

edges is motivated by the increase of robustness in the 
subsequent recognition process. In this paper, we describe 
a very effective representation of contours in gray scale 
images and their hardware realization. Our work aims at a 
robust, real-time robot-vision system (SENROB) in which 
we have incorporated neurobiologically influenced meth- 
ods to achieve orientation and distance invariant object 
recognition. 

In our system, color images are grabbed via a camera 

2 Supponed by the Federal German Ministry for Research and 
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mounted at the hand of a robot. We use special focussing 
techniques to localize objects in the scene and sample 
them subsequently by an artificial retina which is a special 
form of logarithmic retinae. 

Thereby, a selection of ring shaped representations from a 
superposition of differently scaled logarithmic retinae 
results into four spatial frequency channels. In these im- 
ages, several features as e.g. edges, coloured regions, and 
higher characteristics are extracted and serve - combined 
with orientation information derived from the retinal struc- 
ture and easily available distance information -as input for 
mapping processes producing normalized object represen- 
tations which are presented to an associative network. By 
these means, once learnt objects can be recognized, while 
unknown ones are learnt. A detailed description of the 
system is out of the scope of this paper; we refer to 
[Hartmann 1994, Mertsching 19941. Here, we concentrate 
on the representation of edge features and their generation. 

Our space-variant system uses foveal sensing which is 
advantageous due to a wide angle field with a high resolu- 
tion in its center and decreasing resolution towards its 
periphery. Unfortunately, slight focussing errors cannot be 
excluded. The feature 'coloured region' is resonably insen- 
sitive to this kind of error (and thus not regarded in this 
paper), but not the contour features. This leads to a posi- 
tion tolerant representation of edges and corners. 

2 Contour Representation 
The gray scale spatial frequency channels are mapped to 

a layer of artificial on-center (c) and off-center (C;) 
neurons. They are created by center-surround coupling and 
their activity patterns are evaluated by a layer of simpli- 
fied edge detector neurons. 
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Fig. 1: Generation of clouds of oriented edge ele- 
3 ments in order to deal with displacements 
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Their representation, similiar to the cortical representation 



done by simple neurons in the primary visual cortex of 
cats (compare [Hubbel 19591) provides "strings of oriented 
elements" (Fig. la). Previous work on the VLSI- 
implementation of the edge detector level was published in 
[Bilau 19931 and was slightly modified later. The 
generated strings are extremely sensitive to lateral 
displacements .  For  this  reason,  we generate  a 
representation sirniliar to that by complex cortical neurons 
(Fig. lb) which have distinctly enlarged receptive fields. 
Sets of artificial complex neurons with differently oriented 
receptive fields are assigned to each pixel of the channels. 
Due to the large sized receptive fields, a piece of contour 
activates a "cloud" of correctly oriented neurons assigned 
to neighboring pixels. In spite of unavoidable displace- 
ments of the edge clouds between learning and recogni- 
'ion, we can obtain high similarity measures. More about 
this layer can be found in [Hartmann 1990 a/b/c, 19911. 
The hardware implementation of the complex neurons has 
been investigated recently. While the Paderborn group has 
applied a hierarchical approach to the problem, the Stutt- 
gart team has used a border oriented one. Both approaches 
are presented in chapter 3 and 4. 
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Fig. 2: Tighter generation of edge elements 

3 Hierarchical Algorithm for Position Tolerant 
Edge Representation 

The generation of position tolerant edge detectors is 
based on the generation of the oriented edge elements 
related to the simple cells. These are generated for islands 
of 7 pixels on a hexagonal grid and positioned at every 
second pixel of an image. To gain a position tolerant edge 
representation, a two step procedure is applied. In a first 
step, the density of edge elements has to be extended. As 
the detection uses every second pixel, the extension to 

every pixel leads to a tight representation of an edge 
sequence. A continuity check and generalization produce 
further redundancy, therefore wider edge clouds and re- 
sults in higher robustness of the processing in the sub- 
sequent associative netzwork. The next two paragraphs 
describe the two step procedure using a horizontal edge 
sequence as an example. 
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Fig. 3: Continuity check 

3.1 Positon Tolerant Edge Representation by Tight 
Sampling 

The first step of the generation of position tolerant edge 
representations is a tighter setting of the edge elements. 
Now every pixel of an image can possess such elements. 
The resulting strong overlap of the islands is motivated by' 
the fact that the same structure is found by the receptive 
fields of the simple cortical cells. This generation of re- 
dundancy enlarges certainly the robustness of the recog- 
nition process, but the continuity check and the generaliza- 



tion will improve the results furthermore. Fig. 2 explains 
the procedure in detail. Starting from the grid SI as 
reference, the grids (S2-S4) are shifted by one pixel. One 
gains four data structures (DSl-DS4) with oriented edge 
detectors. Superimposing the results of the four data 
structures, the width of the simple edge sequence is 
doubled. 

3.2 Position Tolerance by Continuity Check 
The generalization of edge sequences by a continuity 

check has two purposes: on the one hand, short edge se- 
quences that originate from interferences and that have no 
significance for the recognition process, are suppressed. 
On the other hand, the continuity check expands the edge 
clouds further. As we use a hexagonal grid, the continuity 
check works within a hexagonal window covering seven 
islands (Fig. 3). One condition for the continuity check is 
that a continuous edge sequence has to pass the window. 
If this condition is fulfilled a generalized edge element is 
assigned to the central pixel of the window. 

According to the tight sampling, the window for the conti- 
nuity check is placed on four different island positions. 
This procedure of continuity check is executed for the 
data structures DSI to DS4. In this way, 16 separate data 
structures are built up. This algorithm can be used itera- 
tively to get clouds of oriented edge elements with an 
arbitrary width. 

4 The Border Oriented Algorithm for Position 
Tolerant Edge Representation 

In the border oriented approach, detection and generaliza- 
tion of edge sequences in the vicinity of the central pixel 
will be performed in a single step. 
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Fig. 4: Subwindow of the border oriented approach 
shifted by one edge element. The new 
additional row of edge element information 
is shaded. 

The approach is based on to the fact that moving the 
observed subwindow by one border element in horizontal 
or vertical direction will add only a small amount of new 
information to the existing data. Results of former opera- 
tions can be stored and used for the evaluation of the new 
subwindow (Fig. 4). 
The approach reduces the evaluation complexity from 
O(n2) to O(n) edge elements and minimizes hardware cost 
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Fig. 5: Data flow of the border oriented parallel 

algorithm. Only local operations are used to 
search for edge continuations. 

by using hardware the size of which increases linear with 
subwindow dimensions. The decrease in hardware area can 
be spent to increase the window size to the expected width 
of the edge cloud, so that processing of the image in a 
single run is enabled. 

By applying this approach, the main task that has to be 
performed is searching for new edges or continuations of 
already detected edges in the added element row. Problem 
analysis shows that for most edge sequences, a local 
operating continuation detector is sufficient. Only vertical 
extensions over one or more columns result in a global 
information exchange. Even in this case, the information 
exchange can be split into local column to column opera- 
tions. Fig. 5 depicts the resulting algorithm. Each continu- 
ation detection task works independent of its neighbors; it 
is fed by local available data only and can be performed 
in parallel. The results of each calculation cycle form the 
basis of the following evaluation. 

5 Architecture of the Robot-Vision System 
Fig. 6 presents an overview of the SENROB system. The 

whole process is roughly divided into the steps of pre- 
processing, the logarithmic-polar transformation, the 
generation of the laplacian image, the generation of orien- 
ted edge elements and edge clouds, the continuity check 
and a module for the data transformation and selection. 
The last module contains the invariances and the associa- 
tive network. 
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Fig. 6: Architecture of the robot-vision system. 

The modules for building the sampling window and for 
the generation of edge detectors have been already real- 
ized and integrated in a TIP-System (Transputer Image 
Processing) from PARSYTEC. The hardware architec- 



tures of these modules have been published in several 
papers [Bilau 1993, Bilau 19941. Here, we focus on the 
modules for the generation of the edge clouds. 

For the huge amount of image data, a dataflow architec- 
ture is well suited for this kind of application. 
Constraints for the architecture are: 

the processing time has to be independent of the 
image data, 
the time delays from image grabbing to object 
recognition have to be as short as possible (delays 
of severals images are not acceptable). 

6 Realization of the Hierarchical approach 
As in chapter 3 described, the hierarchical approach uses 

at each level a processing window with a fixed size of 
seven islands. At first, the cross pointers for the three 
possible edge elements of the central island are generated. 
The cross pointer is the number of an edge element in any 
of the six neighboring islands, to which the central edge 
element is connected to. Second, the edge elements of the 
seven islands are combined and generalized to a new 
element. Discontinuous edge sequences are suppressed by 
this operation. Afterwards, the generalized edge elements 
represent a longer edge sequence and are interpreted as the 
data of an island for the next hierarchical level. Here, 
again a window of seven islands is formed, the data is 
combined and generalized to a new edge element. 

6.1 Continuity Check Module 
Fig. 7 illustrates the hierarchical architecture of the conti- 

nuity check module without the controling units. The data 
from the module for generation of oriented edge elements 
is stored in a three rows wide FIFO buffer, the cross 
pointer module starts and the results are buffered. The 
subsequent module processes the generalized edge ele- 
ments of the f is t  hierarchy level. Again a row buffer is 
connected to the output of the module. To build up the 
edge elements at the next level, one has to connect four of 
the generalization modules to the output of the row buffer. 
The interweaved data structures of the first level must be 
fed to these modules in a demultiplexed manner to fit to 
the processing scheme of the hierarchical approach. 

Fig. 7: Continuity check for two levels 

6.2 Cross Pointer Module 
The module (Fig. 8) generates the cross pointers for edge 

elements in block A. To generate the cross pointers of the 
edge elements in block A, the elements of the neighboring 
islands are stored in the blocks R up to G in separate 

pipeline registers. 

Fig. 8: Cross pointer module 

A connection network generates the cross pointers, which 
are stored with the next pipeline clock in block Z. So at 
every pipeline clock, the processing window is moved by 
one island and the cross pointers are generated for the 
block A. 
I I 
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Fig. 9: Connection network 

Every pipeline block is designed to store three edge ele- 
ments due to a maximum of three edge elements at an 
island. To separate these, the connection network (Fig. 9) 
for the crosspointers is used. The results are stored at the 
next pipeline clock in the block Z. 

6.3 Generalization Module 
The cross pointer module as a preprocessing unit, builds 

up the information for the central edge element to which 
edge element in the neighborhood it is assigned to. 
The next processing step is to combine these elements to 
a sequence that is generalized to an element at the next 
hierarchical level. This task is performed by the generali- 
zation module. This time consuming task is mapped onto . . 

two pipeline stages to allow an overlapping processing. 
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Fig. 10: Islands 

The input data is built by the data of three rows. The first 
pipeline step eleminates the data of the islands C, E and 
G and assigns the data to any of the neighboring islands 
A, B, D and F, which possess additional comparators. To 



achieve this, every edge element is applied sequentially to 
a bus, that is connected to the comparators of the islands 
A, B, D and F. If any of the comparators supplies a hit (a 
connection exists), the corresponding edge element is 
buffered into one of the island A, B, D and F. This pipe- 
line step needs at least nine cycles to terminate. After- 
wards; A, B, D and F contain edge sequences with up to 
two elements. 
1 
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Fig. 11: Pipeline stages 

The next pipeline clock buffers these sequences into the 
second pipeline stage for further processing. Every island, 
now labeled with L, M, N and 0 ,  obtains a comparator 
logic. An extra register is provided to enable the combi- 
nation of two edge sequences, that are buffered in the 
same island. At least 12 cycles are required for this pipe- 
line stage to terminate, because in the worst case 12 edge 
sequences have to be stored in these blocks. Now, the 
generalized edge element can be loaded into the subse- 
quent row buffers. 
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7 Realization of the Border Oriented Approach 
The successful partition of the problem suggests a VLSI 

architecture as the second approach based on the conse- 
cutive transmission of edge data at the subwindow border 
through an dedicated unidirectional interconnection net- 
work. Hereby, an effective evaluation of edge sequences 
and a high degree of parallelism is obtained. As can be 
seen in Fig. 12, various hardware aspects are applied to 
implement the algorithm. Thus, the inputs and outputs of 
the interconnection network correspond to possible spatial 
entry and exit points of edges in the new edge element 
row. 

The switching elements represent the column positions of 
edge elements. Their configuration is determined by the 
data of the edge elements and reflects the actual edge 
continuation. The interconnection net is duplicated to 
handle the left or right hand sided flow of edge sequences 
simultaneously. One transmitted data bit indicates this 
direction. Other transmitted and received data are used to 
identify each edge sequence uniquely. The ordered sequen- 
ces are stored in a first-in first-out memory (FIFO) and 
the medium orientation is calculated incrementally. 

8 Summary 
In this paper we have presented two algorithms for the 

generation of a position tolerant representation of edges, 
which are currently investigated. The hierarchical approach 
can be cascaded to get a position tolerant representation of 
edges with an arbitrary width. The border oriented ap- 
proach minimizes the hardware costs, which increases in 
a linear manner with the window dimension. Both ap- 
proaches have to be examined in detail to decide, which 
one fulfills the constraints of processing time at a mini- 
mum of hardware costs. 
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