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Abstract h 
This paper studies the problem of reconstructing a planar 
surface by observing multiple feature points that are known 
t,o be coplanar in the scene. This paper presents a direct, X 

~nrthod for reconst.rurting a planar surface by applying the x a ,,' 
principle of ma.ximr11n likelihood estimation based on geo- Y' 
mrtric constra.int.s and a statistical model of image noise. 
The significant fact about our method is that not only the 0 0' 
:I-D posit,ion of the surface is reconstructed acrnrately but Y 
its reliability is a.lso compnted quantita.tively. 

Figr~re 1: The  camera model and the coordinat.c,s sys- 
trms. 

1 Introduction 
Sterco is one of the most funda.mrntal means of 3-D 
sensing from ima.ges and is widely used as a visual sen- 
sor for autonomous navigation of robots [I ,  71. In the 
past, the  study of stereo has mainly focused on the  cor- 
respondence detection between the two images. How- 
ever va.rior~s other issues arise when we reconstruct 3-D 
from detected correspondences. First of all, the 3-D re- 
construction should be  accurate. Hence, we must max- 
imize the accuracy by optin~ization techniques based 
o n  the  statistical characteristic of image noise. At the  
same t,imr, the reliability of the reconstructed 3-0  must 
br conll~ated [6]. If the errors involved in the  recon- 
structed 3-D cannot be estimated, robots ca.nnot take 
al)propriat,e act,ions to  archive given tasks effectively. 
This papcr presents a new theory for reconstructing 
planar sr~rfaces by stereo in a statistically optimal way 
a.ntl cvalua.ting the reliability of the  reconstruction in 
q ~ a n t i t ~ a t i v e  t e r~ns .  

In order to  reconstruct an  optimal planar surface, 
we introduce the  principle of m a x i m l ~ m  likelihood esti- 
mation and derive a scheme of nonlinear optimization 
for optimal estima.t,ions. At the same time, we derive 
a theorrtical lolocr bound on the attainable accuracy of 
c.st,imat,ion. In order to compute t,hr optimal solution, 
we use a numerical schelne called reraormalizatio~a 131. 
By numerical simulation, we show that  the  obtained so- 
lution almost attains the  theoretical lower bound on ac- 
curacy. This means that  we can cluantitatively predict 
t,he reliability of the reconstructed surfaces. This has 
a great significance in robotics applications of stereo. 

2 Camera and Noise Model 

Let {P,}. cu = 1, .  . . , N. be  feature points on a planar 
surface in the scene. Let n be  the  unit surface normal 
to  the plane, and d the  distance of it from the origin 
0. We call {n, d j  the surface parameters of the  plane. 
As illustrated in Fig. 1, we take the  first camera as 
the  reference coordinate system and place the  second 
camera in a position obtained by translating the first 
camera by vector h and rotating it around the center 
of the  lens by matrix R. We call {R, h}  the motion 
(or stereo) parameters. The two cameras may have 
different focal lengths f and f ' .  

Let {(x,, ~ , ) } , a  = 1, .  . . . .h:, be  the  image coor- 
dinates of the feature points projected on the image 
plane of the first camera, and { ( r r ; ,  y&)),a = 1 . .  . . , N, 
those for the second camera. We use the following 3- 
dimensional vectors to  represent them: 

In the absence of noise, the  vectors x ,  and I:, the 
motion parameters { R ,  h ) .  and the  surface paranle- 
ters { n , d )  satisfy tlrc following relation (we omit, t,lrr: 
derivation [4]): 

RT(hnT - dI) 
x: x Ax, = 0 ,  A = 

,/FP ' (2) 

Here, a x A  is the matrix defined by the vector product 
of 3-dimensional vector a and each column of 3 x 3- 
matrix A. Let B, and v be  a 3 x 4-matrix and a 
4-dimensional vector. respectively, defined by 
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Then, Eq. (2) is rewritten in the following form: 

In the presence of noise, vectors x, and x &  do not 
necessarily satisfy Eq. (5). Write 

where 2, and x', are the true values of x, and x&, 
respectively. We regard Ax, and Ax', as random vari- 
ables that have means 0 and covariance matrices V[x,] 
and V[xk], respectively (61. The absolute level of image 
noise is very difficult to estimate a priori. Let 6 be the 
average magnitude of noise, which is unknown. We call 
it the noise level. On the other hand, geometric charac- 
teristics of image noise such as uniformity and isotropy 
can be easily predicted, so we introduce the nomal-  
ized covariance matrices Vo[x,] and Vo[xk], which are 
assumed to be unknown, and express the covariance 
matrices in the following form: 

3 Optimal Estimation 
We apply maximum likelihood estimation for estimat- 
ing an optimal value of u .  First, we optimally correct 
x, and x', in the form 

x, = x, - Ax,, x i  = x1 , - AX&, (8) 

so that Eq. (5) is satisfied for a fixed value of u .  If 
image noise has a Gaussian distribution, this correction 
is done for each a by the optimization based on the 
Mahalanobis distance [4] in the form 

Jo = (Ax,, ~ O [ ~ ~ I - A ~ ~ )  
+ (Ax:, vo[xb]-Axk) - min, (9) 

where Vo[x]- is the generalized inverse of Vo[x] and 
( a ,  b )  denotes the inner product of vectors a and b. 
The residual J, obtained by substituting the resulting 
optimal values i, and i& is a function of u ,  SO we 
rewrite it as J,[u] and seek an optimal value of u by 
the minimization 

1 
- J,[u] + min. 
N ,=I 

(10) 

This minimization is rewritten in the form 

where 

w 0 ( u )  = (V~[B,UI)-. (12) 

The notation ( .); means computing the generalized 
inverse after projecting the matrix to a matrix of rank 
r. In Eq.(12), Vo[B,u] is the matrix given in the fol- 
lowing form [4]: 

Here, the vector product A x a of a 3 x 3-matrix A 
and a 3-dimensional vector a is a 3 x %matrix defined 

The exterior product [A x B] of 3 x 3-matrices A and 
B is a 3 x 3-matrix defined by 

where c,,k is the Eddington's epsilon, taking values 1, 
-1, and 0 if ( i j k )  is obtained from (123) by an even 
permutation, an odd permutation, and otherwise, re- 
spectively. 

Let u be the optimal solution of the minimization 
(11) under the constraint llull = 1 . It can be shown 
that the theoretical covariance matrix of the optimal 
solution u has form 

where Pv = I - u u T  (we omit the proof [4]). 

4 Renormalization 
If W,(u)  is replaced by a constant matrix W,, the 
function J [u]  in Eq. (11) is written in the following 
form: 

J [u]  = (u, M u ) .  (17) 

Here, M is the 4 x 4-moment matrix defined by 

The solution that minimizes Eq. (17) under the con- 
straint llull = 1 is given by the unit eigenvector for the 
smallest eigenvalue of M. It appears at  first sight that 
the optimal solution of Eq. (1 1) is obtained by letting 
W, = W,(uo) for an appropriate estimate uo and 
minimizing Eq. (17). Using the resulting solution u l ,  
we can update the weight by letting W, = W,(vl) 
and iterate this process until convergence. However, 
such iterations introduce statistical bias into the solu- 
tion [3]. This is shown as follows. 

Define 4 x 4-matrices N(') and N(') by 

where X, and Y o  are 3 x 3-matrices defined, respec- 
tively, by 



Y, = R[W, x v,[x',]]R~, (21) 
and the inner product ( A ;  B) of 3 x 3-matrices A and 
B is dcfined by 

1 

( A ;  B )  = AilRil. 
:.]=I 

(22) 

Define the u ~ ~ b i a s e d  moment matrix I$l by 

Hence, we can obtain an unbiased estimate of v if we 
use M instead of M. However, the noise level c is 
unknown. In order to resolve this difficulty, we intro- 
duce a nl~~uerical scheme called renormaliratzon, which 
treats c 2  as a variable. The procedure for renormaliza- 
tion is stated as follows [3, 4,  61: 

1. Le tc=Oand W , = I , c u = 1 ,  ..., N.  
2. Compute the moment matrix M defined by Eq. (18). 
3. Compute the 4 x 4-matrices N(') and N(') defined by 

Eqs. (19), and compute the following 4 x 4-matrix 

4. Compute the smallest eigenvalue X of M and the cor- 
responding unit eigenvector v. 

5. If X x 0, return v, c and M. Otherwise, update c 
and W, as follows: 

if D 2 0, 

(v, N(')V) - 2c(v, N(')V) - fi 
c t c +  

2(v. N(')v) 
7 

X 
if D < O ,  c - - c +  

(v,  N(')u)' 

W,- (x', x AV0[x,]AT x x', 

+ (AX,) x VO[X,] X (AX,) 

t c[V~[x;] x A V O [ Z ~ ] A ~ ] ) ; .  (28) 

6. Go back to Step 2. 

If the vector v is obtained, we can compute the sur- 
face parameters { n ,  d) of the planar surface in the form 
form 

The symbol N [ . ]  denotes normalization into a unit vec- 
tor. An unbiased estimate of the squared noise level e2 
is given in the following form [4]: 

The covariance matrix V[u] given by Eq. (16) is ap- 
proximated by 

Thus, we can compute by renormalization not only an 
optimal estimate of v but also an estinmte of the un- 
known noise level e and the reliability of the computed 
estimate v .  

Left Image Right Image 

Figure 2: Left and right images with noise. 

Our method Least-squares method 

Figure 3: Error vectors. 

5 Experiment 
Numerical  Simulation 

We illustrate the effectiveness of our method by do- 
ing numerical simulation. We place a grid pattern in a 
3-D space and regard the grid points as feature points. 
The two cameras are assumed to have the same focal 
length f = 600 (pixels). After projecting the feature 
points onto the image planes, we add as image noise 
a Gaussian random number with standard deviation 
3 (pixels) to each of the image coordinates indepen- 
dent!~. Hence, the noise level t is equal to 11200, and 
Vo[xU] = Vo[z',] = diag(l,l ,O) (the diagonal matrix 
with 1, 1, 0 as the diagonal elements in that order). 
However, the value of f is regarded as an unknown in 
the sin~r~lation. Fig. 2 shows the, left and right images. 
The result obtained by our method is shown in Fig. 4. 
For the sake of comparison, we show the r e s ~ ~ l t  obta.ined 
by the usual least-squares fitting (as desrrihed in Sec- 
tion 1) in the same figure. Wt. can observe that our 
method produces better rcsults t,han thc least-squares 
method. 

Analysis of E r r o r  Behavior  

We define the error vector by 

d - d  
Au = P , ( n  - n )  + d n ,  

where we put Pfi = I - nnT i111d { n , d )  are the true 
surface parameters. From the theoretical covariance 
matrix V[v] given by Eq. (16), the covariance matrix 
V[u] of the error vector is computed in the following 
form (we omit the derivation [4]): 

1 1 
V[u] = V[n]+-(V[n, d] i iT+i iV[n,d]T)+--V[d]f inT. 

d d' 
(33) 

We repeat the computation 100 times, each time 
using different noise, and plot the error vector three- 
dimensionally in Fig. 3. The ellipsoids in the figures 
indicate the theoretical standard deviation in each ori- 
entation computed from the covariance matrix given by 



Our method Least-squarea method 

Figure 4: Reconstructed planar surface 

Figure 5: Reliability of 3-D reconstruction. 

Eq. (16). \Ve can observe that  the  solution computed 
by the least-squares method is statistically biased. In 
contrast, our solution is observed to  be statistically un- 
biased and almost attains the  theoretical lower bound. 

Re l i ab i l i t y  o f  3-D R e c o n s t r u c t i o n  

The  unit eigenvector t,,, of the covariance matrix 
V [ v ]  for the  largest eigenvalue A,,, indicates the ori- 
entation of the  most likely deviation of v from its true 
value, and indicates the standard deviation in 
that  orientation. Hence, we can visualize the reliabil- 
ity of the  reconstructed planar surface by displaying 
the  two planes corresponding to  the two vectors 

The  covariance matrix V [ v ]  is computed by the ap- 
proximation (31) from the  da ta  alone. We call these 
two planes the  primary deviation pair. The primary de- 
viation pa.ir computed from Fig. 2 is shown in Fig. 5, 
where the reconstructed grid pattern is drawn in solid 
lines and the  primary deviation pair is drawn in broken 
lines. 

R e a l - I m a g e  E x a m p l e  

Fig. 6 shows two stereo images. The left figure in 
Fig. 7 shows a grid pattern defined by feature points 
(corners of the windows) extracted froin the left im- 
age of Fig. 6. The  motion parameters are obtained by 
the  optimal camera calibration system [5]. The right 

Figure 6: Real stereo imagcvi. 

Leil grid image rcliahilily 

Figure 7: Feature points extracted frorn the  left image 
and the reliability of its 3-D reconstruction. 

figure in Fig. 6 shows the computed 3-D shape. The 
reconstructed grid pattern is displayed in solid lines, 
and the  primary drviation pair is displayed in broken 
lines. Thus. we can visualize the reliabilitv of 3-D re- 
constructio; without using any knowledge'of the rnag- 
nitude of image noise. In this experiment, the base line 
llhll is very short as cornpared with the distance to the 
building surface (approximately 1/16). Hence, the re- 
liability of 3-D reconstruction is very low. It is very 
important to evaluate the reliability of 3-D sensing in 
real applications of stereo for robot operations, because 
otherwise robots are unable to  take appropriate actions 
to  archive given tasks effectively. 

6 Conclusion 
We have presented a direct reconstruction method for 
reconstructing a planar surface by stereo vision. By 
doing numerical simulation, we have shown that the  
obtained solution almost attains the  theoretical lower 
bound on accuracy. Our method can not only recon- 
struct the optimal estimate but also allows us to  eval- 
uate the reliability of the computed estimate quantita- 
tively. This has a great significance in robot operations 
in real environments. 
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