MVA'94 |APR Workshop on Machine Vision Applications Dec. 13-15, 1994, Kawasaki

RECONSTRUCTION OF 3-D TERRAIN DATA
FROM CONTOUR MAP

Jin-Seon Lee and Seung-Jong Chung
Department of Computer Engineering
Chonbuk National University

Dukjin-dong 664-14,
Chonju, Chonbuk 560-756, Korea

ABSTRACT

This paper presents a raster-based algorithm for
reconstruction of 3-D terrain data from contour
information appearing on the conventional 2-D map. The
height of an interior point between two neighboring
contours is defined by a linear interpolation formula
whose variables are the height of those contours and
distance from the point to the contours. The distance
from an interior point to the contour is computed by
using the distance transformation operation. The distance
transformation is a raster-based operation which
computes the value of a pixel using the values of
neighboring pixels. So our a]gon&nn has the advantage of
easy implementation, and it is fast since it performs only
simple computation during raster scanning. Also the
experimental results show that the reconstructed terrain
preserves faithfully the terrain information appearing on
the contour map.

1. INTRODUCTION

The 3-D terrain data have been used effectively by
GIS(Geographical Information System) for several decades
for many purposes such as displaying the terrain in
meshed or shaded form, and planning automatically the
roads or missile paths [1, 2]. So, in map data processing,
how to obtain these terrain data is one of the major
problems [3].

With stereo vision technique which uses two or more
aerial photographs, we can obtain terrain data for a
particular area. One of the most difficult problem in this
technique is the correspondence problem which is not
solved completely vet [4]. Another difficulty is the large
m%trmmmdmacqumngﬂnmemagfsbymrplme
or satellite. Alternative solution is to use contour
information on the conventional paper maps which
represents the terrain information implicitly. In this
solution, the main point is how to interpolate height value
at an interior point from the height values and shapes of
the neighbaring contours.

The method popularly used considers points on the
contours as randomly distributed and applies spatial
interpolation algorithms like Kriging algorithm [2]. It does
not use the useful property of contours that they are
composed of connected points. Another method is to
divide the contours into small line segments, convert
them into TIN(Triangulated Irregular Network) structure
by trangulating them, and interpolate smooth surfaces
from each triangle [5]. Due to its useful properties, TIN
is used by most of commercial GIS. A problem of TIN
method is that when we vectorize the contours, some
information loss is inevitable. Also it needs solution for
each of four subproblems which are not trivial [6], and

281

whose implementation is hard. Another method chooses
the most reliable vertical or horizontal line, and
interpolates heights of all the points on that line [7]. It
repeats the same process until all the points determine
their heights.

In this paper, we present a new method which
efficiently reconstructs 3-D temain from contour map.
The height of an interior point between two neighboring
contours is defined by a linear interpolation formula
whose variables are the heights of those contours and
distance from that point to the contours., The distance is
length of the shortest path from the point to the contour
which never crosses any other contour. We believe that
this definition is reasonable for various situations existing
in the actual maps. Our algorithm is based on the
distance transformation algorithm proposed by Borgefors.
To compute the distance for all the interior points
simultaneously, we modify Borgefors's algorithm Since
the distance transformation algorithm is a raster-based
algarithm which requires simple arithmetic operations, our
algorithm has some advantages of being fast and easy to
implement. The experimental results show that the terrain
reconstructed by our algorithm faithfully preserves the
information contained implicitly in contour map.

Section 2 formulates the reconstruction problem, and
Section 3 describes our algorithm to compute the distance
from interior points to neighboring contours. Experimental
results are shown in Section 4. Section 5 concludes the
paper.

2. FORMULATION OF HEIGHT
INTERPOLATION PROBLEM

Contours appearing on the conventional paper map
comprise many layers and the outer contour completely
encloses the inner ones. A contour forms a closed curve,
and all the points on a contour have the same height
The difference between heights of two neighboring
contours is constant. The height of an interior point lying
between two neighboring contours has a value between
the height values of those contours.

The reconstructed height of an interior point must
satisfy some important properties in order to produce a
pleasant terrain, though the exact solution does not exist.
First, height of an interior point must be decided
according to how much it is close to the inner and outer
contour. For example, if an interior point is very close to
the inner contour and far from the outer contour, the
height of this point must be close to that of the inner
contour. Second, the reconstructed terrain must be smooth
such that there exists no spike or pit Third, in
proceeding to inner contour from outer one, the height
must continuously increase or decrease.

The main point in our reconstruction problem of 3-D
terrain data from contour map is to define mathematically

how nmwich an interior point is close to two neighboring
contours. The definiion should satisfy above properties
on quality of the reconstructed terrain, and should lead to
a good computational efficiency.

Considering above remarks, we define the distance
from an interior point to a neighboring contour as length
of the shortest path which connects the point and the
contour and never cross any other contour,

Now we define some terms, and by using these we
can define the height interpolation formula. In Figure 1,
an outer contour is termed as Cus, and an inner one as
Cn. The height of Cuw and Gy is Hae and Hi,
respectively. An interior point whose height we want to
know is termed as P. The distance from P to Cox and
Gin is Dan and Dy, respectively.

Some terms used in height
interpolation formula.

Figure L.

Then, the height at P is defined by usual linear
interpolation formula as below.

H

* (Hin = How) + Hou .

DoutDin

3. DISTANCE COMPUTATION

When we formulate the reconstruction problem as
above, the most difficult problem is how to compute Dos
and Dy, the distance from an interior point to two
neighboring contours. Our idea is to use the distance
transformation algorithm for the computation of Dee and
D, Distance transformation is a raster-based operation
that transforms an image consisting of object pixels and
non-object pixels into the image in which the non-object
pixel has the distance value to the nearest object pixel.
We wuse Borgefors's algorithm [8] with some
modifications to be suitable to our application. In this
section, we first describe briefly the Borgefors's distance
transformation algorithm and then describe our algorithm
for computation of the distance which is based on
Borgefors's algorithm. Also, we analyze the computational
and memory efficiency of our algorithm.

3.1 BORGEFORS'S DISTANCE
TRANSFORMATION ALGORITHM

Borgefors's distance transformation algorithm is
described as follows. The algorithm makes an initial
image I in which object pixels are set to 0 (it means that
the distance is 0) and non-object pixels to L (it means
the infinite distance). For L, a sufficiently large value is
used. To compute the distance from non-object pixels to
the nearest object pixel, the algorithm uses two masks
shown in Figure 2. In these masks, pixel represented by
0 is center pixel and value of other pixels is local
distance to the center pixel (a=1 and b=V2).

Performing a forward scanning on the initial image I
mﬂdmm'fomungabackwardswmmmemﬂt

the process of distance transformation is
ccm:;]eted.[)m'ingrasterscarm forward mask is

282

0

b

a

a
B- b b

Forward mask Backward mask
Figure 2. Distance transformation masks.

b]

F:

applied from left top to right bottom on image, and
backward mask is applied from right bottom to left top.
During scanning, value of the current pixel is replaced by
t}en-nmmnnvaluemngﬁvevaluesobtamcdbyaddmg
the mask values and the pixel values of
the image. A pseudo code for the algorithm is as follows.

Forward scanning :
for j = 2. .. YRES-1 do
for 1= ,XRES -1 do
IIlI[J] minimum (IG+x](+y+FIx]ly])
{x.y]EF
Backward scanning :
for j=YRES-1,..,2 do
for 1= XRES -1, . L2
1G] = minimum (I[1+x]h+y]+B[xl[yl)
(xy)EB

XRES and YRES is the image resolution, I[illj] is the
value of pixel at the position (ij). (x,y) is position of a
pixel in the mask (-1<x<], -1<y<1). Fixlly] and
Blxlly] is the local distance (0, +1, or +y2) at a
position (x,y) in forward mask and backward mask,
respectively.

3.2 ALGORITHM FOR DISTANCE
COMPUTATION

As shown in Figure 1, our problem is to compute both
of Do and Dy, for all the interior points P between every
pair of neighboring contours. So our problem is more
conplex than the pure distance transformation problem
We should modify Borgefors’s algorithm to be suitable to
our problem. The difficulty in applying Borgefors's
algorithm to the problem for computation of the distance
Do and Dy is illustrated in Figure 3. In case of contours
in this figure, the distance from P to Cu has been
defined as Do in Section 2. However, if we designate
only the points on G as object pixel, Dus’ is computed
as the distance by Borgefors's algorithm Also if we
designate all the points on Coae and Gy, as object pixel,
Doy is computed as the distance. Thus we need
define three kinds of pixel.

'I‘hemintsoanuareset
the interior points between
(sufficiently large value) as non-object
points on Gy set to W (L+1) as wall pixel. W-pixels
tl-semleasawa]lwlnchmepamstmﬂdmtcmss

Figure 3. Difficulty in applying Borgefors’s
algorithm to our problem

Till now, we consider the procedure for only one pair
of neighboring contours Cow=Cin If Dax and Dy is
separately computed for each contour pair, computational
time is required so much in case that many contours
exist because number of image scannings is excessively
large. So we should design an algorithm which computes
Doax and Dy, concurrently for every pair of neighboring
contours with a constant number of image scannings. For
this, we make an initial image as follows. In Figure 4,
contours with odd numbers (i.e, C,, Cs, G are initialized
to 0, contours with even numbers to W, and all the
interior points in the image to L. After initialization, we
perform the forward scanning and backward scanning on
the initial image as shown in the following code. (To
avoid the floating—point computations, we use 3 and 4
instead of 1 and V2 for a and b in the mask,
respectively.)

Forward scanning :
for j=2 .., YRES -1 do
for i=2 .., XRES -1 do
if (I[](j]=W)

Ili1G)- minimum (l+x1+y] + Fix1ly])
(xy)EF AND Ifi+x]lj+y]*W
Backward scanning :
for j=YRES-1,.., 2 do
for i=XRES-1,.., 2 do

if (IL[51+W)
I1i)(j]= minimum (Th+x]j+y] + BlxIly])
(x¥)EB AND I[i+x]j+y1*W

In the result image, interior points in R with even
number for i have the valve Due to G-, and interior
points in Ri with odd number for i have the value I, to
C.. For example, interior points in Ry have the value Do
to Cs and interior points in Ry have the value Dy, to Ca

Figure 4. Example contours for describing our
algorithm.

Now, we exchange the role of contours with odd
number and ones with even number. That is, contours
with even number (ie., Co, Cp, and Cy) are initialized to 0,
contours with odd number to W, and all the interior
points to L. Then we perform the forward scanning and
backward scanning to the initialized image. In the result
image, interior points in R with odd number for i have
the value Do to Gy, and interior points in R with even
number for i have the value Dy, to G,

We should also mention the followings in describing
our algorithm First, all contours should be 4-connected.
If they are not, the computed distance is not guaranteed
to be to the neighboring contours because the wall pixel
cannot play its role properly. Second, as shown in Figure
4, outermost contour is broken into several segments, and
outermost and innermost contours have only one
neighbor. So they must be handled specially. We assign
same value to the segments belonging to a contour. Also,

283

in case that the neighboring contour is only one, we put
a point (in Figure 4, represented by *) at a suitable
position with a suitable height This point is treated as
another neighboring contour.

3.3 EFFICIENCY ANALYSIS

Timing and memory efficiencies of our agorithm are
analyzed as follows.

(1) Timing efficiency

To compute D, and Dua of all the interior points, we
repeat twice a same sequence of the processes:
initialization, forward scanning, and backward scanning.
In each of the initialization, forward scanning and
backward scanning, one image scanning is needed. Thus
six image scannings are performed totally. In addition,
extra scannings (such as scanning for assigning identity
number to each contour) are needed about three times.
Thus by less than ten image scannings, Dy and Dy for
all the interior points are computed This number of
image scannings is independent on number of input
contours. All the operations performed during an image
scanning are simple ones such as assignment of initial
values, comparison and addition of integer numbers. After
obtaining Din and Dae to compute the height of an
interior point, only simple floating-point operations (in the
interpolation formula in Section 2, one floating—point
division, one multiplication, and one addition) are needed.
Concluding, our algorithm has high computational
efficiency because only fixed number of image scannings,
simple integer operations, and limited number of
floating-point operations are needed.

(2) Memory efficiency

In our algorithm, to store the computed Dy and Do,
two 2-dimensional arrays with same size as the input
image I are needed Also small amount of additional
memory is needed.

4. EXPERIMENTAL RESULTS

Image capturing and contour extraction are performed
on IBM PC/486 computer. Figure 5(a) shows an example
image input by a scanner from an actual paper map. A
paper map for Chonju city located southwest in Korea
with scale of 1:25000 is used for our experiment. The
size of input area in map is about 25cm*25cm. Actual
area is a part of surrounding region of Chonju city
whose size is about 0.6km*0.6km

Since original image is a color image, we separate
RGB component images by using Photostyler image
editing software, and select a component image which
best preserves contour lines while keeping other symbols
to the minimum Figure 5(a) shows the image obtained
by above procedure. From this image, we remove letters
and symbols, and connect the broken contour lines.
One-pixel thick contour lines are obtained by performing
the SPTA thinning algorithm [9]. The postprocessing for
contour lines to have 4-connectivity is performed. The
result image is shown in Figure 5(b).

The proposed reconstruction algorithm is implemented
in C language under SUN SPARC station 10. Figure 5(c)
shows the 3-D terrain reconstructed by our algorithm in
meshed form. In this figure, we can see that the peak at
215m appears correctly near center of the image. Another
peak appears at right below of the center peak. Several
areas can be also seen like a valley at top right, abrupt

descent at middle left, and planar region at bottom
middle.

To illustrate the exact form of the reconstructed
terrain, we overlap the sectional shapes for three
horizontal lines on the corresponding positions in Figure
5(d). This figure shows that the reconstructed terrain
preserves faithfully the terrain information implicitly
appearing on the contour map.

(b) extracted contour map image

(c) meshed-form display of reconstructed 3-D terrain

284

() cross—sectional display of reconstructed
3-D terrain

Figure 5. Reconstruction of 3-D terrain
from contour map.

5. CONCLUSION

We propose an efficient raster-based algorithm for
reconstruction of 3-D terrain from contour map extracted
from a 2-D paper map. The algorithm performs a fixed
number of image scannings, and performs only simple
computations during image scanning. Also, experimental
results show that the reconstructed terrains preserve
faithfully the terrain information appearing implicitly on

contour maps.
There are some further research topics such as
autormatic extracion of contowrs, and automatic

assignment of numbers and height values to the extracted
contours, merging the reconstructed terrains at their
common boundaries after separately reconstructing them.

REFERENCES

R. Kasturi, et al, "Map data processing in
geographical information systems,” IEEE Computer,
Vol. 22, No. 12, pp.10-21, December 1989,

P.A. Burroughs, Principles of Geographical
Inprmation Systems r Land Resources Assessment,
Oxford University Press, 1986.
S. Viseshsin and S. Murai, "Automated height
information acquisiion from topographic map,”
Proceedings of IAPR Workshop on Machine Vision
Applications, pp.219-221, November 1990.

[4] BK.P. Hom, Robot Vision, MIT Press, 1986.

[51 ESRI Inc, ARC/INFO User's Guide: Surfice
Modeling with TIN, 1991.

[6] D. Meyers, et al, "Surfaces from contours,” ACM

Transactions on Graphics, Vol. 11, No. 3, pp.228-258,

July 1992,

K Cheng and M. Idesawa, "A simplified method of

data form conversion from contour line surface model

to mesh surface model,” Proceedings of IEEE

Intermational Conference on Pattern Recognition,

pp.582-585, 1986.

G. Borgefors, "Distance transformations in digital

images,” Computer Vision, Graphics, and Image

Processing, Vol. 34, pp.344-371, 1986

N.J. Naccache and R. Shinghal, "SPTA: a proposed

algorithm for thinning binary pattemns,” IEEE Trans.

on SMC, Vol. 14, No. 3, pp.409-418, May 1934.

(1]

[2]

(3]

(7

(8]

(9l

