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ABSTRACT 
The area and the perimeter of a planar object are 

two useful features to  describe the shape of the ob- 
ject, and again the motion of i t .  This paper deals 
with the estimation of the two features from a dis- 
crete binary image. The area can often be accurately 
estimated by counting the number of pixels inside the 
object. However, the estimation of the perimeter is 
a problem, since many possible contours, all having 
different lengths, correspond to a specific discrete re- 
alzzation. Thus,  t o  develop a practical length estima- 
tor, some reasonable assumption about the original 
contour should be made. W e  assume that the bound- 
ary of a blob-like object consists of chains of circular 
arcs, and therefore evaluate the precision of several 
area and length estimators applied to circles. The 
problem of efficient computatron is also discussed. 

INTRODUCTION 

Let A be the area, and P be the perimeter of a 
planar object. The  circularity C defined by C = 
47rA/P2 is 1 for a circle and between 0 and 1 for all 
other shapes. The  area, perimeter and circularity are 
useful features to  describe the shape of a 2D object, 
and again the motion of it (e.g. in medical applica- 
tions [I]). This  paper deals with the estimation of 
the features from a discrete binary image. 

The  area can often be accurately estimated by 
counting the number of pixels inside a n  object. How- 
ever, the estimation of the perimeter is a problem, 
since the length of the original contour might be con- 
siderably different from the length of the digital con- 
tour. I t  is impossible to  reconstruct a general con- 
tinuous contour from discrete data, because many 
possible contours, all having different lengths, cor- 
respond t o  a specific discrete realization. Thus, t o  
develop a practical length estimator, some reason- 
able assumptions about the original contour should 
be made. Many authors [2]-[6] developed and eval- 
uated length estimators for straight lines. One of 
these estimators was also found to be accurate for 
the boundaries of blob-like objects [2, 61. 

We assume that  the boundary of a blob-like ob- 
ject consists of chains of circular arcs, and therefore 

evaluate the precision of several area and length es- 
timators applied t o  circles. The circularity C is a 
scale, translation and rotation invariant shape fea- 
ture. T h e  precision of the circularity is used as one 
of the measures for the evaluation. The  problem of 
efficient and simultaneous computation of area and 
perimeter is also discussed. 

A REVIEW OF METHODS 

We describe some methods t o  estimate the area 
and the perimeter of objects represented by square 
pixels. 

Methods Based on Bit Quads 

Gray [7] proposed a systematic approach t o  com- 
puting the area and the perimeter. The  method is 
also presented in the book of Prat t  [a]. Each small 
region in a binary image is matched with some pixel 
patterns. The number of matches for each pattern 
is counted. The area and the perimeter are then 
formulated as weighted sums of the counts. Gray 
[7] designed a set of 2 x 2 pixel patterns called Bit 
Quads: 

Let n{Q) be the number of matches between the 
image pixels and the pattern Q. Gray computed the 
area of the object as 



Freeman [9] computed the area enclosed by the 
contour of the Freeman chain codes c l c2  . . . c ,  

Figure 1: (a) 8 code words represent 8 direc- 
tions. (b)  The Freeman chain code of the object is 
07054341. (c) The mid-crack code of the object is 
0770755543343111. "A" indicates a start point. 

and the perimeter as 

The area computed by Eq. (1) is equal to  the num- 
ber of pixels of the object, which is known t o  be ac- 
curate. However, the perimeter formula of Gray is in 
considerable error for many types of objects [8]. 

Prat t  [8] presented more accurate formulas for the 
area and the perimeter, citing an unpublished note 
of Duda 

and 

Methods Based on Chain Codes 

Chain coding is a method to represent a binary 
object. The  8-connected Freeman chain coding [9] 
uses a 3-bit code 0 5 c 5 7 for each boundary point. 
The number c indicates the direction in which the 
next boundary point is located, as shown in Fig. l (a) .  
The 8-connected Freeman chain coding strategy is 
shown in Fig. l (b) .  There are some variations of the 
Freeman chain coding, for example, the 4-connected 
chain coding and the generalized chain coding [lo]. 

The mid-crack chain coding [ l l ]  considers the 
mid-cracks instead of the centers of the boundary 
points. Assume that  a pixel is a square with four 
sides. A mid-crack is then the mid-point of a pixel 
side. An example of the mid-crack coding is given in 
Fig. I (c). The  mid-crack codes possess some special 
properties in measuring shape features [ l l ,  121. 

Boundary chain codes can be determined using a 
contour following [a], which is a traversing process 
to  identify the boundary of a binary object. The  
algorithm requires operations of O ( N ) .  

where n is the length of the chain, ci, and ciy are 
the x and y components of the i th  chain element cj 
( c i , ,  ciy E (1, 0, -1) indicating the change of the x- 
and y-coordinates), and y;-1 is the y-coordinate of 
the s tar t  point of the chain element c ,  in an arbitrary 
coordinate system. The values of ci,, c,, and yj-1 
can be computed under the contour following. 

Freeman [9] computed the perimeter as the length 
of the chain. The  formula for the perimeter is 

where n, is the number of even chain elements and 
no the number of odd chain elements. Referring t o  
Fig. 1, an even chain element indicates a vertical or 
horizontal connection between two boundary pixels, 
having length 1, while an odd chain element indicates 
a diagonal connection, which has length a. 

Vossepoel and Smeulders [3] improved Freeman's 
method in estimating lengths of straight lines by us- 
ing a corner count n,, defined as the number of oc- 
currences of consecutive unequal chain elements in 
the Freeman chain code string. The length is given 
by 

P = 0.980ne + 1.406n0 - O.O9lnC (7) 

where the weights were found by a least-square fitting 
for all straight lines with n, + n o  = 1000. 

When the mid-crack chain codes are used, Eq. (5) 
can still be used to estimate the area. In this 
case, the computation of cj, and cjy is more com- 
plex since more possible values are involved, i.e., cj,, 
ci, E (-1, -112, 0 ,  112, 1). During the contour fol- 
lowing, a sequence of background-tc-object transi- 
tions can be detected. cj, and cjY can then be de- 
termined according t o  the types of two subsequent 
transitions. To  estimate the perimeter, Eq. (6) be- 
comes 

Although the methods are related to  the chain 
coding, they can in fact determine the area and the 
perimeter without generating any chain codes. The 
values A,  n,, no and n, can be computed by accu- 
mulation during the contour following. 

The  methods based on the chain coding compute 
the perimeter as the length of the chain, and of- 
ten give an overestimated result. Kulpa [2] derived 
a compensation factor for computing the length of 
straight lines. With this factor, Eq. (6) becomes 



where the factor is approximately 0.948. Kulpa [2] 
found that this compensation also gave good results 
for most of the blob-like objects met in practice. 
Dorst and Smeulders (61 proved that Eq. (9) gave 
a consistent estimate for the length of a circular arc 
of n/4. 

Discrete Green's Theorem 

Freeman's method evaluates the area of a poly- 
gon enclosed by the chain elements, using an O(N)  
algorithm. The result is different from that of Gray's 
method, which equals the area to the number of pix- 
els of a discrete region. Gray used an O(N2) a lge  
rithm to count the number of pixels. However, the 
counting can be done in the time of O(N)  by us- 
ing a discrete Green's theorem [13], which computes 
a sum of a twc-dimensional function over a discrete 
region by a summation along its discrete boundary. 
The discrete Green's theorem gives exact result of a 
double sum, and has been used for fast and exact 
computation of geometric moments [14]. The area is 
the zeroth order moment of a homogeneous region. 

EXPERIMENTS AND RESULTS 

The methods to be tested are the Bit Quad 
methods of Gray and Duda, Freeman's method and 
its analogue using the mid-crack chain codes, and 
Kulpa's method given by Eq. (9). We tested the pre- 
cision of these methods in estimating the areas and 
the perimeters of circles of radius R having integer 
values from 5 to 70 pixels. 

Binary test images of the circles were generated 
by giving intensity value 

1 if (x - X O ) ~  + (y - 5 R2 
0 otherwise 

where (xo, yo) is the coordinate of the centroid. 
Using the above methods, we estimated the areas 

A and the perimeters P of the circles, and computed 
the relative errors defined by "relative error = (x - 
x)/x" where x is the true value. The true values of 
the area and perimeter are evaluated by A = nR2 
and P = 27rR. 

The relative errors in area given by the Gray and 
the Duda method are shown in Fig. 2(a). We see 
that the area estimations of Gray and Duda are both 
good. The result of the Duda method is slightly bet- 
ter. The average relative error for 15 < R < 70 
was 0.0003 for the Duda method and -0.0025 for the 
Gray method. The mid-crack method gave a result 
very similar to that of Gray. The Freeman method 
underestimated the area, giving a relative error sim- 
ilar to that of the Duda method if we assume that 
the radius is R - 0.5. 
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Figure 2: (a) The relative errors in the areas esti- 
mated by the method of Gray, and Duda. (b) The 
relative errors in the perimeters estimated by the 
method of Freeman, and Kulpa. (c) The circularities 
estimated by combining different area and perimeter 
estimators, i .e .  Kulpa's perimeters with Gray's ar- 
eas, Kulpa's perimeters with Duda's areas, and the 
mid-crack perimeters with the mid-crack areas. The 
radius has integer values from 5 to  70 pixels. 
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From Fig. 2(b) we see that the perimeters esti- 
mated by using Kulpa's compensation factor is more 
accurate than those estimated by the method of Free- 
man, which gave an overestimation. Gray's method 
was very inaccurate, giving a relative error of about 
0.3 (overestimated). The methods of Duda and mid- 
crack all overestimated the perimeters. The relative 
errors of these two methods are similar t o  that of the 
Freeman method if we assume the radius is R + 0.5. 

Combining the estimators of different methods, we 
computed the circularities shown in Fig. 2(c). We see 
that using Kulpa's perimeter estimator together with 
Gray's area estimator gives the best result, which 
is close to but often slightly larger than the true 
value 1. It is better than combining Kulpa's perime- 
ter with Duda's area although Duda's area is better 
than Gray's area. This is because Kulpa's perimeter 
and Gray's area are both slightly underestimated. 
Other combinations do not give good results. As 
an example we show the results when the areas and 
the perimeters are both computed by the mid-crack 
method. 

We can observe that the variance of the error is 
large when the value of R is small. This is because 
the spread of the ground truth is large when R is 
small, and suggests that we should have a sufficiently 
large resolution in order to obtain a good estimation. 

DISCUSSION 

Different methods have different computational 
complexity. Using the Bit Quads, the order of the 
computation is N 2 .  (We assume that an image has 
N 2  pixels.) It can be reduced to N  by using a con- 
tour following algorithm. 

The area can be formulated as the number of p k -  
els in the object, or an integration over an approxi- 
mated continuous region. The perimeter can be for- 
mulated as the length of the boundary of a polygon, 
approximating the original object. This length can 
be multiplied by a compensation factor, giving a bet- 
ter estimation. All the length estimators presented 
above can be generalized as a linear model 

where the object is characterized by a set of counts n, 
such as the counts of the pixel patterns, or the counts 
of the even and odd chain elements. The perimeter 
is computed as linear combinations of the counts, 
using w as a set of weights. Nonlinear estimators for 
straight lines have also been developed [6]. 

We tested the accuracy of several area and perime- 
ter estimators for circles, assuming that the bound- 
ary of a blob-like object is approximately a chain 
of circular arcs. From the above experiment, we 
see that Gray's Bit Quad method gives a good es- 
timation of the area, but a bad estimation of the 

perimeter. Gray's method has been improved by 
Duda in both the area and the perimeter estima- 
tion. But there is still a large bias in the perime- 
ter which causes a relative error of about 5 per- 
cent, and Duda's method overestimates the perime- 
ter compared to the area. Freeman's method and 
the mid-crack method give results which are similar 
to that of Duda's method, but improve the compu- 
tational performance by reducing the order from N2 
to N .  The perimeters computed by Kulpa's method 
are much better than all the other methods, giving 
a small underestimation. 

Different methods may have different assump- 
tions of the location of the object boundary. The 
mid-crack method assumes that the boundary goes 
through the mid-cracks, and Freeman's method as- 
sumes that the boundary goes through the centers 
of the boundary pixels. The two boundaries are lo- 
cated in a distance of a half pixel. That  means the 
area and the perimeter estimated by the mid-crack 
method are always larger than those estimated by 
the Freeman method. 

To compute the circularity, the best result is ob- 
tained by using Gray's estimator of the area and 
Kulpa's estimator of the perimeter. However, they 
can not be computed simultaneously. Gray's area is 
equal to the number of pixels in the region, which 
can be computed by using a discrete Green's theo- 
rem. This suggests the use of the discrete Green's 
theorem [13, 141 instead of Gray's algorithm. Then 
the two estimators can be computed simultaneously 
by a contour following. Analogous to Green's theo- 
rem, the discrete Green's theorem evaluates a dou- 
ble sum over a discrete region by a single summation 
along the discrete boundary of the region, and thus 
gives computational advantages. As shown in a re- 
cent paper [15], it can also be extended to estimate 
the volume of a 3D object. 

The results of the test, using test images of circles, 
should be useful for other blob-like objects. However, 
different shapes may require different perimeter esti- 
mators. It is therefore interesting to see how a good 
estimator can be found for a given type of shape. If 
one desires an optimal estimator, a faithful charac- 
terization (a set of counts) should be made. Dorst 
and Smeulders [6] believed that it was very difficult, 
and was even impossible for circular arcs. But, as 
a method to analyze a given characterization, they 
divided the parameter space of the continuous data 
(one dimensional R-space for the case of a circle) 
into regions each corresponding to one value of the 
discrete characterization n. The region imply the 
spread of the ground truth for a given value of n. 
Vossepoel and Smeulders [3] used three counts (see 
Eq. 7) as a characterization to  estimate the length 
of straight lines. They found the optimal weights by 
a least-square fitting. This method suggests a way 
to design a linear estimator. Using the linear model 



given by Eq. 10, the problem of finding a good esti- 
mator is to  find a set of counts (also known as the 
characterization of the discrete data  [6]), and then to 
determine the optimal weights. 

CONCLUSION 

In this paper, we give a review of several area and 
perimeter estimation techniques. The area, perime- 
ter and circularity are features used in shape anal- 
ysis. An accurate estimation of the circularity de- 
pends on accurate estimations of the area and the 
perimeter. The  area of a binary region can be ac- 
curately estimated by counting the number of the 
pixels inside the region. However, to  estimate the 
perimeter is more difficult. To  find a good perime- 
ter estimator, it is necessary to  make some assump- 
tions about the boundary of the object. We assume 
that  the boundary is a chain of circular arcs. This 
assumption should be useful for many blob-like ob- 
jects met in practice. Many estimators have been 
tested for circles of different sizes. We conclude that  
with a sufficiently large resolution all the methods 
give good estimations of the area, and the method of 
Kulpa gives a good estimation of the perimeter. To 
compute the circularity, the best result can be ob- 
tained by using Kulpa's perimeter, and Gray's area, 
which is the number of the pixels of the region. The 
Gray's area can be computed by a discrete Green 
theorem. Then the area and the perimeter can be 
computed simultaneously and efficiently, based on a 
contour following algorithm. 
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