
MVA'94 IAPR Workshop on Machine Vision Applications Dec. 13-1 5, 1994, Kawasaki

ON THE EXTRACTION OF VARIOUS REGIONS
IN VECTOR MAPS

Guofang Jiao, Eihachiro Nakamae, Katsumi Tadamura
Hiroshima Prefectural University, 562 Nanatsuka, Shobara 727, Japan

Hiroyuki Inuyama
Sanei Giken Co., LTD, Maple Bldg 4F, Hiroshima 730, Japan

ABSTRACT
On a topographical map of civil engineering, there are

various enclosed areas, for instance, rice fields, wild fields,
buildings, roads, walls, regional boundaries and so on. Before
a software system such as road planer is run, it is necessary
to extract these various regions and features, and to transform
them to 3D data. The automatic extraction and classification
of all of them on a screen are difficult and very time-
consuming. It is better to combine the automatic recognition
with interactive operation. It is obvious that interaction is
easily done if vector data of maps is applied. On the other
hand, the vector data is much less than the raster data of the
same map. This paper proposes a practical solution for
understanding of vector maps, including two major methods;
ditching (Directed Track stretCHING) method for open
regions (e.g., roads, slopes and walls etc.) and inward tracing
method for bounded regions. (e.g.. various fields)

INTRODUCTION
There are many feature recognition techniques on the

understanding of engineering drawings and topographical
maps[5-61, especially, state transit[]], morphology and
hough transformation[2], and MAP (multi-angle parallelism)
[3] etc.. However, they are mostly based on a map's raster
instead of vector data. We think that it is important to extract
various regions in vector maps automatically because, in most
cases, the extractions of various features have to be executed
after the vector data is transformed from related raster data by
applying a universal program. It is reasonable to search for
such enclosed areas as rice fields, vegetable fields, meadows,
buildings, roads, walls and other surrounding regions step by
step since such a large and time-consuming task as
understanding of a map had better to be divided into small
subtasks in accordance with their different features. That is

easily done by interaction if based on the vector data. After the
vectorization of raster data, of course, the omission of some
significant information and the addition of some noises
increase the difficulty in the extracting of the features.
However, the recognition on the raster data takes much more
memory space than that on the vector data does, and the
former is much slower. On the other hand, it is more easy to
do interactive operation such as picking a line on the basis of
vector data because the interaction is very important in a
practical software of the understanding of topographical maps
141. So the recognition on the vector data is also very useful.

of many parts with certain areas and specific meanings. Every
part here is defined as a enclosed area, even though the
boundary is not closed, for example, rice fields, meadows,
buildings, roads, rivers, slopes, mountains. towns, vegetation
and regional boundaries etc.. According to respective
geometric features, they can be divided into four classes:

. Open symbol-like regions, consisting of relevant symbols
that form long and almost parallel areas, for instance,
slopes, various walls etc..

. Open bounded regions, such as roads, whose boundaries
are not closed and almost parallel.

, Rounded regions, containing zero, one or more significant
symbols. Such areas as fields, buildings, and the other
surrounding regions are specified by their boundaries. We
assume that there should be one or more symbols inside a
bounded region to be searched. When there is no symbol.
for instance, in built-up areas, in regional boundaries and
in some fields where the symbols are omitted, a related
symbol must be added to the region by interaction. That is
because specifying the location and the type of a region is
the main purpose of the paper.

. Non-bounded regions, for example, mountains etc.
consisting of contour lines.

Our methods for the understanding of maps combine
automatic extraction with interactive operations. For example.
contour lines, character strings, and so on are indicated by
interaction. The automatic recognition of open regions is
derived by interactive indication of the initial conditions. And,
in order to reduce interference and speed up the search for the
bounded regions, a search range (e.g., a rectangle or a
polygon region) surrounding all symbols and polylines
contained in the bounded regions to be searched, is indicated
on the screen by interaction. Thus any lines outside the
indicated range are ignored.

The procedure for the understanding of a vector map is
divided into the following five phases.

. Interactive indications of contour lines and character
strings. -

. Extraction of open regions.

. Interactive insertion / indication of some symbols in the
case of no symbols inside the bounded regions andlor of the
symbols inside the bounded regions not being able to be
recognized automatically.

. The search for the bounded regions that invokes the
recognition of things like solid lines, dotted lines, dashed
lines, and the extraction of symbols.

> -
. The modification of the results if necessary and the

In general, as in fig.l(a) which is a map with assignment of such attributes as altitudes by interactive
Japanese legends (the same as the following), a map consists tools.

This paper emphasizes two major methods, ditching
(Dlrected Track stretCHING) method for open regions (e.g.,
roads, slopes and walls etc.) and inward tracing method for
bounded regions. (e.g., various fields and regional boundaries)
resp..

DITCHING FOR OPEN REGIONS
The open regions such as roads have the following

characteristics which become the basis of and starting point for
the method proposed in this paper.

. Their border lines are almost parallel andlor not closed.

. The local curvatures of the border lines are not so large.

The ditching (Dlrected Track stretCHING) method consists
of two actions; interactive initialization and automatic
recognition. The interactive initialization includes the
following items:

. indication of two segments whose purpose is to inform the
automatic recognition from where it should be started.

. input of zero, one or two lines called cut-lines whose
purpose is to inform the automatic recognition where it has
to stop (e.g., t l and t2 in fig. 2)..

Fig. 2 Ditching Method

If the user gives initial conditions by arbitrarily and
interactively indicating two segments (e.g., e l and e2)
belonging to the two border lines as illustrated in fig.2, then the
automatic procedure of the ditching method starts from these
segments (called initial tracks, left side-track and right
side-track resp,) and follows in order and advances step by
step firstly in the direction u,, and after that, in the opposite
direction u2. Thus the tracks are continously stretched until

the terminal condition is met.
Each step of the ditching method includes the following

operations:
. SelRehind operation plays the role of the selection of the

track which lags behind. We call the track a hehind track.
The work is to check which of two side-tracks lags behind
in the direction of ud.

. ExtRehind operation is to find a candidate segment in the
side of the behind track in accordance with certain
evaluation rules and to connect the behind track with the
candidate. The detail of the operation is explained in the
first following subsection.

. ChkTermin operation is to test whether the terminal
conditions are met or not. The terminal conditions may be
the following cases:
. no candidate segment.
. the track intersects a line segment which is not candidate

for stretching the track, such as contour line and cut-lines
input by interaction at first.

. RevDatrack operation is to revise the datum-track which
is a bisector line of a trapezoid constructed by two side

tracks.
After an open region is extracted, there is an operation

called ExpRranch, the function of which is to explore a
potential branch of the sought open region based on a couple of
points at a fork. And then, the above steps are invoked to
search for the branch. As a result, a lot of open regions may
be sought at the same time, so this operation is very convenient
for users.

ExtBehind Operation
The following two cases exist for this operation. Let's

assume that the left side-track is the track which lags behind.

Case I . If the point vl on the track is not an end vertex of a
polyline pk in the direction of track stretching (see fig.3(a)),

then the next segment u4 from VI to V4 is chosen for the
extension of the lagging track if the following conditions: is
satisfied.
b l . The absolute value of a directed angle from u4 to

datum-track (ud) is not larger than a constant Centd
(e.g., a/10) given by the system.

b2. u4 does not intersect the extension of ud.

(a) The First Case (b) The Second Case

Fig. 3 ExtBehind Operation

Case 2. Otherwise, as shown in fig. 3(b), for every polyline
pi inside and across BX which is rectangle defining the

search range dependent on the scale of the map, if pi has
never been chosen for the extension of a side-track and the
following conditions are satisfied, then vector u i from VI to
v. is selected for the extension of the lagging track. Here
&d(uj) is a directed angle from u j to ud

c l . Vertex vj is inside EX;
c2. vj and vl are in one side (e.g., the left side) of ud;
c3. -Centd < Cd(uj) < Centd;
c4. Cd(uj) is the largest (for reference, in case of open

symbol-like regions, the absolute value of Cd(uj) is
the smallest).

The lagging track (e.g., the left side-track) is extended to
vj , and the two points vl and vj are stored as a fork of a
potential branch of the open region which is being sought.

In the above two cases, if the extension of a side-track
fails, the automatic procedure is terminated in current direction
of track-seeking, and then follows in the opposite direction. If
the extension of a side-track is successful, the check for the
terminal conditions must be executed.

RevDatrack Operation
After the ExtBehind operation, the datum-track should be

also extended and revised for subsequent track stretching. This
operation consists of two suboperations, as demonstrated in
fig.4; here the (left) side-track is extended to Vj and the right
side-track (u,) is from V, to v,.

Fig. 4 RevDatrack Operation

. The datum-track is extended to vd9. where Vd' is the
midpoint of vj and v,;

. vd is moved to v4, where v4 is the midpoint of vd and V2,
and v2 is the midpoint of v. and vl. The suboperation is
designated to balance the induences of the two side-tracks.

ExpBranch Operation
In the E x t k h i n d operation, all pairs of points at forks in

open regions such as roads are stored. These points are in
order so that it is possible to determine in which side the
branch is. In order to explain the following methods clearly,
we call the open region that has already been extracted the
sought region and its corresponding tracks the sought tracks.
In the meantime, we term both the open region which is being
extracted the current region and its corresponding tracks the
current tracks.

vo "1 Vo v1

(a) (b)
Fig. 5 ExpBranch Operation

Let's assume that the pair of points is vl and vz, u is a
vector from vl to v2, and a part of the sought side track Ts on
which both V, and V2 are is a polyline from Vo to vo'(see
fig.5). The exploration of potential branch is done in the
following steps.

. pick one polyline pl on which vl is located.

. pick the other polyline p2 on which v2 is located.

. for p l and p2, follow the same procedure as below.
- in the left side of the track Ts on which u is, find a

vertex v3 (v4) next to vl(v2) on p1(p2) under the
condition: x/6 < a l (a2) < 5x16 (see fig.S(a))

- If v3(V4) exists, let ul(u2) be. a vector from Vl(V2) to
v3(v4); otherwise, in the left side of the track Ts,
find such a vertex vs(v6) on one of other polylines
around vl(V2) under the conditions: x/6 < P1(P2) <
5x16 nnd I P1(P2) - x12 I is the smallest (see fig.S(b))

- If vs(V6) exists, let ul(u2) be a vector from V1(V2) to

V5(V6).
. If both u l and u 2 exist and the following conditions are

satisfied, u l and u 2 are the two initial side tracks of the
branch.
n14 < the angle between u l and u 2 < 3x14;
u1 doesn't intersect u2.

After the initial side tracks of the branch are obtained, the
automatic procedure of ditching method is executed to search
for the branch. After the branch finishes, the next potential
branch is explored. The procedure is repeated until all pairs of
points stored in ExtBehind operation have been explored. As
a result, a lot of branches may be extracted automatically.

INWARD TRACING METHOD
We assume that there is at least one symbol inside every

bounded region. We define the center, CO, of the symbol as
the origin of the corresponding region. The first polyline that a
ray from the origin meets is named as the closest polyline(e.g.,
p in fig.6). It is undoubted that each polyline as a part of the
boundary of the corresponding region is the closest one. The
closest polyline as a part of the boundary is called a valid
candidate. Each valid candidate has two vertices, defined as
connectors, one is called the clockwise connector and the
other the counter-clockwise one. For example, in fig.6, V, is
the clockwise one on p, v2 is the counter-clockwise one on p'.
The clockwise connector (e.g., vc) of one valid candidate (e.g.,
p) connects with the counter-clockwise connector (e.g.. v2) of
the other (e.g., p') when the two valid candidates are connected.

Fig. 6 Inward Tracing Method
Before the search for bounded regions, a search range (AA)

such as a rectangle or a polygon should be indicated by
interaction in order to reduce the interferences. And then, for
every symbol inside the range, it is possible to search for the
corresponding boundary. As illustrated in fig.6, the method is
started from an initial valid candidate, p, which is a polyline
that a ray from the origin of the symbol meet firstly, and goes in
a clockwise and then counter-clockwise direction until the
boundary of the bounded region is closed or the search fails.

Here the word "Inward" has two meanings: every valid
candidate is closest polyline; the sum of two weighted angles
(e.g., ail and a i2 in fig.9) is smallest when next valid candidate
is traced from the current one. An initial valid candidate (p) is
selected as the current valid candidate at first. Then, for current
one, the following recursive procedure is executed in clockwise
and counter-clockwise direction so that a series of valid
candidates forming the boundary of the region are traced out.

If the clockwise (counter-clockwise) connector of the current valid
candidate has not heen traced out (
trace the clockwise (counter-clockwise) connector;
check whether there is a closest polyline relative to the ray from the

origin to the connector.
Iftrue let the current valid candidate he the closest polyline;
else (

search for the next valid candidate under the meanings of " Inward;
ifnext valid candidate exists (

connect the current valid candidate and the next one;
let the current one he the nert one;

I
I

I

Finally, i t is necessary to test whether a series of valid
candidates construct a closed boundary or not, and whether the
boundary surrounds its related symbol. If so, it means that the
search is successful: otherwise, the search is a failure.

In the algorithm described above, there are two key
operations: tracing a connector and searching for the next valid
candidate, explained in following subsections.

Tracing a Connector
In order to describe the tracing method of a connector

clearly, we introduce another concept called a tangent point.
The tangent point, v,, is a vertex on a valid candidate, p,
satisfying the following conditions (see fig.7).

Fig.7 Tangent Point

(a) Outside Case (b) Inside Case

Fig. 8 Tracing a Connector

. Both vf and vb neighboring to vt locate in one side of ut,

. Every vertex vi on p with acute angle a is located on the
same side as vf of u,. Here a is the angle between ut and ui,
which is a vector from CO to vi

As shown in fig.8, if p is the current valid candidate in
clockwise search. the clockwise connector v, of p is
detcrmined by the following conditions and steps. Let's take vo
as a starting point on p.
. v, is a tangent point or an end vertex of p if there is no

tangent point . Here, v, is clockwise (or counter-clockwise
if in counter- clockwise search) from vo relative to CO.

. If v, is outside AA, let vc be the first vertex v,' on p going
entry to AA (see fig. 8(a)).

. Otherwise, if v, is inside AA and not an end vertex of p,
test if there is a next valid candidate, pz, around v,. If not,
let v, be the next vertex going far from vo, this step is
repeated until v, is an end vertex of p or last vertex v,'
inside A A (see fig.8(b)).

Search for Next Valid Candidate
We suppose that p is the current valid candidate, as shown

in fig.9. If there is the closest polyline related to the ray from
the origin to v,, then the closest polyline is selected as next
valid candidate. Otherwise, every polyline (e.g., pi) inside or
going through a certain search range BX given by the system is
checked on the following conditions and steps:

Find a point v, on pi nearest to vc under which vi is a vertex

inside BX, or a perpendicular foot point Vj from v, to
segment SE of pi if SE goes through BX.

Fig.9 Next Valid Candidate

. Calculate angle ui = 0.7 * ail + 0.3 * a i z .
Of all polylines inside or going through BX, if a, of pi is

the smallest (or the largest if in a counter-clockwise search), pi
is the next valid candidate. If the counter-clockwise (or
clockwise if in a counter-clockwise search) connector of pi has
been determined, the search stops.

CONCLUSIONS
We proposed a ditching method for the extraction of open

regions and inward tracing method for bounded regions. All of
them are based on the vector data of a map. Many experiments
reveal excellent efficiency, even though it is impossible for our
algorithms to fit every case. Fig.l(b) is the final results of the
extraction of various regions in fig.l(a). Fig.10 is an example
of urban roads.

As a summary, the soundness for roads is up to 95 8. For
other open regions such as slopes and various walls, the
validity is only up to 75% and 65% resp.. This is because great
interferences exist around the slopes and walls. For bounded
regions, cases up to 8 5 8 are automatically solved. When some
deviations exist in the results, they can be easily revised by
using the interactive tool.

REFERENCES
1. Shin'ichi Satoh, Yutaka Ohsawa and Masao Sakauchi, A

Proposal of Drawing Image Understanding System
Applicable to Various Target Drawings, J. of IPS, Japan,
1992, Vo1.33, No.9, pp1092-1102, (in Japanese).

2. Hiromitsu Yamada, Kazuhiko Yamamoto, and Katsumi
Hosokawa, Directional Mathematical Morphology and
Reformalized Hough Transformation for the Analysis of
Topographic Maps, IEEE Transactions on Pattern Analysis
and Machine Intelligence, Vo1.15, No.4, April, 1993,
pp.380-387.

3. Hiromitsu Yamada, Kazuhiko Yamamoto, Taiichi Saito,
and Shinji Matsui, MAP: Multi-Angled Parallelism for
Feature Extraction from Topographical Maps, Pattern
Recognition, Vol. 24, No. 6, 1991, pp. 479-488.

4. Yutaka Ohsawa, Yasuhiro Takishima, and Masao Sakauchi,
An Efficient Map Data Conversion System Using Deviced
Combination of Full Automatic and Human-assisted
Recognition Phases, J. of IPS, Vol. J.72-D-11, No. 4,
1989, pp545-554, (in Japanese).

5. Yutaka Ohsawa, Shuzo Yamakawa, Yasumitsu Oda, and
Tsuguo Shinhama, Recognition and Understanding
Techniques for Graphical Database Capture, (Shokoda),
1989, (in Japanese).

6. Masao Sakauchi, On the Automated Data Conversion
Techniques -- How can maps and engineer drawings be
understood by computer, UDC 68 1.3: 16591 2.43, Vo1.41,
No.4, 1989, pp236-243. (in Japanese).

(a) before recognition

(b) final results with various regions
Fig.1 A Typical Map

(a) before recognition

(b) urban roads extracted
Fig. 10 An Example of Ditching Method

