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ABSTRACT 
A hybrid (statistical/structural) approach is pre- 
sented, for scale- and orientation-invariant recog- 
nition of multi-component cartographic symbols. 
A decision-tree classifier (DTC) is used to iden- 
tify the shapes of the individual components of a 
symbol. Structural matching is then used to de- 
termine the type of symbol under consideration. 

INTRODUCTION 
Machine-interpretation of cartographic maps 
has come to occupy an important place 
in the burgeoning document-image-processing 
industry. Several comprehensive collections 
of papers on this topic are now available [I]. 
Cartographers often use predefined symbols 
to convey such 'meanings' associated with log- 
ical structures represented in maps. Recogni- 
tion of cartographic symbols is, therefore, an 
important aspect of any mapinterpretation 
system. 

In this paper, we describe a method for 
recognizing cartographic symbols that has 
been developed for processing digital images 
of land-registry maps in Switzerland. These 
maps are basically line drawings which iden- 
tify the various regions of an-urban neigh- 
borhood. The proposed method for symbol 
recognition operates on bilevel images. It is 
independent of the size and orientation of the 
hand-drawn symbols, and is also independent 
of the scanning resolution of the input image. 

Figure 1 presents an overview of the 
symbol-recognition approach proposed here. 
The different stages of the flowchart shown 
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Figure 1: Overview of the symbol recognition 
process. A binary decision-tree classifier is used 
for shape classification. The shape features used 
are designed to be independent of scale and ori- 
entation. 

in Figure 1 are discussed, in that order, in the 
following sections. Some closing comments 
zre offered, after a discussion of experimen- 
tal results. 

PREPROCESSING 
Regions that contain potential candidates for 
symbols are first selected from the input im- 
age. This selection is performed on the basis 
of certain general criteria involving the size 
and proximity of connected regions of black 
pixels. A rectangular subimage enclosing each 
selected region is used for further processing. 



In the general case, cartographic symbols have 
several distinct components. A hierarchical 
connected-component representation [2], re- 
ferred to here as the component-tree, of the in- 
put symbol-subimage is generated. Each node 
of the component-tree represents a connect- 
ed region in the subimage. The hierarchical 
structure of the component-tree preserves the 
relationships of neighborhood and inclusion 5. 
among the individual components of the sym- 
bol. This component-tree is then processed 
to recognize the corresponding symbol. First, 
the individual components are identified us- 
ing a shape recognition approach. A simple 
tree-matching procedure then identifies one 
of the known symbol-prototypes that matches 
the structure of the input symbol. 

SHAPE FEATURES 
A set of shape features is used to identify 
each individual component in the component- 
tree. These shape features were recently used 
by Di Zenzo et al. [5] for optical character 
recognition (OCR). The shape features are de- 
rived mainly from the convex-hull of the shape 
(component) in question. The convex-hull of 
a shape is the smallest polygon that complete- 
ly encloses the shape, and it can be computed 
from its outer contour. Following the termi- 
nology of Di Zenzo et al. [5], we use the term 
bay to refer to a significant convex-deficiency. 
(A convex-deficiency is considered to be sig- 
nificant if its area is greater than a predeter- 
mined fraction of the total area within the 
convex-hull.) The shape features used in this 6. 
study are briefly described below: 

1. Color of Centroid: If the centroid of the 
convex-hull belongs to the shape itself, its 
color is 'l', otherwise it is '0'. 

2. Circularity: The circularity of a shape is 
given by the ratio AIC,  where A is the 
area of the shape and C is the area of the 
smallest circumscribing circle centered at  
the centroid of its convex-hull. 

3. Number of Holes: A substantial region 
of background color, completely enclosed 8. 
within the shape, is called a hole. 

4. Number of Sides: Every segment of the 
convex-hull polygon is a potential side. 
The normalized length (length of the 
segment divided by that of the entire 
convex-hull) is first computed for each 
segment of the convex-hull. Segments 
having a normalized length greater than 

some predefined threshold (some frac- 
tion of unity) are considered valid sides. 
Every side is assigned a direction such 
that, while traversing the side from tail to 
head, the shape in question lies to the left 
of the side. This definition makes a side 
invariant to scale and orientation, and ro- 
bust to noise. 
Number of Lids: A lid is defined as a side 
which 'covers' a bay of significant area. 

Sides and lids, as defined above, are vec- 
tors, and the following operations can be 
defined on these vectors. 

Nearness: Two vectors are said to be 
near each other if the shortest normal- 
ized distance, along the convex-hull, 
between them is smaller than a prede- 
termined threshold, T I .  Similarly, two 
vectors are said to be far from each oth- 
er if the shortest normalized distance 
between their tips is greater than some 
threshold, Tz. 
Cooperation/Competition: Two vec- 
tors are said to cooperate if their scalar 
product is positive. If the scalar prod- 
uct of two vectors is negative, they are 
said to compete. 
Twisted pair: Two competing vectors 
that are far from each other are said to 
form a twisted pair. 
Consecutiveness: Two vectors are said 
to be consecutive if there is no other 
vector between them. 

The following higher level shape features 
can now be described: 
Side-torsion and Lid-torsion: The num- 
ber of twisted pairs composed of the sides 
of a shape, is called the side-torsion of the 
shape. Lid-torsion is defined similarly for 
lids. 
Side-chain-length and Lid-chain-length: 
A chain consists of a sequence of vectors 
(of the same type, side or lid), such that 
each vector, except the first one, is near 
and consecutive to the previous one. The 
length of the chain is given by the number 
of vectors in the chain. 
Side-cycle-length and lid-cycle-length: A 
chain is called a cycle if the first and last 
vectors in the chain are near and consec- 
utive to each other. If a chain is not a 
cycle then its cycle-length is defined to 
be zero. 



SHAPE RECOGNITION 
The shape features are arranged in an or- 
dered set, called a pattern. Di Zenzo et al. 
[5] use a classification program consisting of 
several blocks of code, each specifying the ex- 
pected features-values of one of the known 
shapes. Our recognition-scheme differs from 
theirs since we use an automatically designed 
classifier to assign a shape-label to each shape, 
depending on its pattern. The shape fea- 
tures described above are not well-suited for 
use with statistical-parametric classifiers. In 
defining the shape features, the two most im- 
portant criteria have been invariance to vari- 
ations in scale and orientation, and stabili- 
ty under noise conditions. Therefore, we ex- 
pect the features to show very little variability 
within a class. This indicates that it should 
be easy to design a simple binary decision- 
tree classifier (DTC) for the recognition task. 
Such a classifier can be thought of as a binary 
tree in which each non-terminal node repre- 
sents a decision involving the comparison of 
the value of a specific feature in the pattern 
to a predetermined threshold. If the feature- 
value is greater than the threshold, the deci- 
sion process descends along the 'right' path, 
otherwise the node along the 'left' path is se- 
lected next. This process is repeated until a 
terminal node of the decision-tree is reached. 
At this point a label is assigned to the input 
pattern. 

Supervised training of this classifier in- 
volves the design of the binary-decision-tree, 
using training patterns from each known 
shape-class. Several procedures for automati- 
cally designing a DTC have been proposed in 
the pattern recognition and machine learning 
literature [3]. The DTC used here is designed 
using the algorithm proposed by Sethi and 
Sarvarayudu [4] which is based on the concept 
of average mutual information. (In this limit- 
ed space, it is not possible to discuss the de- 
tails of the training algorithm. Kindly refer to 
[4] for a complete description of it.) After the 
DTC has been designed using a set of train- 
ing patterns, each leaf (terminal node) of the 
DTC is exclusively associated with a subset of 
the training patterns. Sethi and Sarvarayudu 
[4] propose the following static labeling crite- 
rion when an input pattern reaches a given 
leaf of the DTC: determine the class which 
has the maximum number of representatives 
in the set of training patterns associated the 
leaf (i.e., determine the 'majority class' at the 
leaf). Assign the label of this class to ev- 

ery input pattern that reaches this leaf. In 
contrast, we use a dynamic labeling scheme. 
Among the training patterns associated with 
the leaf, the pattern closest to the input pat- 
tern is determined, and its label is assigned to 
the input pattern. The distance between two 
patterns is expressed as a cosine measure, and 
therefore lies between 0 and 1. The distance 
to the nearest training pattern is also used as 
a measure of confidence of the resultant la- 
beling, and can be used to implement a reject 
option. 

TREE MATCHING 
Following the shape-classification step, a com- 
plete description of the composite symbol 
is available in terms of the shape-labels of 
the individual components, and their inter- 
relationships. The structural descriptions of 
all the symbols in an application domain 
are available a priori, and these are stored 
in prototype-tree structures. The labeled 
component-tree of the input symbol-subimage 
is compared with each prototype-tree, in turn, 
until a match is found. Rotational invariance 
in the recognition is achieved by not enforc- 
ing any order among the sibling-nodes in the 
component-tree. The symbol represented by 
the component-tree is assigned the same label 
as the matching prototype-tree. 

RESULTS 

Figure 2: Examples of symbols found in Swiss 
land-registry maps: (a) solitary rock; (b) vine- 
yard; (c) direction of flow; (d) wooded region; 
( e )  a single tree; (f) open water region. 



Table 1: Each row shows the nine feature-values 
for a given shape. The letters in the beginning 
of each row identify the shape with reference to 
Figure 2. Shapes e l  and e2 are the inner and out- 
er components, respectively, of the symbol shown 
in Figure 2(e). Similarly, shapes fl and f2 are, 
respectively, the lower and upper components, of 
the symbol of Figure 2(f). The features comput- 
ed are: I. number of holes; 2. circularity; 3. color 
of centroid; 4. number of sides; 5. side torsion; 
6. side chain length; 7. number of lids; 8. lid 
torsion; and 9. lid chain length. 

The symbol recognition algorithm described 
in the previous sections is part of a m a p  
interpretation system being developed pri- 
marily to process land-registry maps of 
Switzerland. Figure 2 shows some images of 
(hand-drawn) symbols used in our maps. A 
few other symbols that are used in these maps 
are not included here. Figures 2(e) and 2(f)  
illustrate the two inter-component relation- 
ships (containment and neighborhood) that 
are possible between components of a multi- 
component symbol. 

Table 1 shows the shape feature-values 
computed for the different shapes shown in 
Figure 2. In computing these features, a 
threshold of 0.1 was used to establish the va- 
lidity of sides and lids. That  is, segments 
of the convex-hull polygon that were at  least 
as long as 10% of the entire length of the 
convex-hull were accepted as valid sides. The 
DTC for shape-classification was designed us- 
ing four randomly chosen training patterns 
per shape-class. In our tests, the symbol- 
subimages to be recognized were not used in 
the training process. Perfect recognition was 
achieved at  both levels (shape-recognition of 
the individual components, as well as com- 
plete recognition of the composite symbols). 

COMMENTS 
A hybrid approach for recognizing carto- 
graphic symbols has been presented above. 
Symbols with multiple components are repre- 

sented in a hierarchical component-tree which 
preserves the inter-component relationships. 
First, an automatically designed DTC is used 
to label the individual components that make 
up a symbol, by identifying their shapes. The 
shape-features used here are invariant to scal- 
ing and rotation, and are very stable in the 
presence of noise. They are highly intuitive, 
and the feature-set can be easily extended if 
required. The DTC selects only those fea- 
tures that are best suited for partitioning the 
feature-space appropriately, for the given set 
of known shapes. In our experiments the de- 
cision tree had a height of only four levels. 
This demonstrates that the shape-classes are 
fairly well clustered in the feature-space and 
therefore the features used are quite power- 
ful for shape-discrimination. Shape classifica- 
tion is followed by a structural matching step, 
in which the labelled component-tree is com- 
pared with a series of prototype-trees to se- 
lect the prototype-tree that matches the input 
component-tree. In our implementation, a 
strict match is required in order to identify the 
complete symbol. In other situations, partial 
tree-matching can also be used. This could 
be particularly useful in correcting mistakes 
made in the previous shape-classification step. 
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