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ABSTRACT 

Computer vision involves a host of problems, 
algorithms and techniques dealing with all aspects of 
capturing scenes and converting them into meaningful 
interpretations. A computer vision system may include a 
pattern recognition subsystem and be itself embedded 
within a more complex system. Machine vision systems 
feature a combination of complexity on one hand and a 
balance between structure and behavior on the other 
hand. Analysis and design of computer vision svstems 
calls therefore for a metKodology that represents &ually 
well structure and behavior within a unified frame of - - - ~  - 

reference and has adequate tools for complexity 
management. This paper discusses the object-process 
analysis (OPA) as an approach to tackle this task. 
Following the introduction of the basic OPA principles, 
we use the Image Understanding Environment (IUE) 
Project documentation to demonstrate the principles, use 
and the benefits of the methodology. The result is a series 
of consistent, inter-related object-process diagrams that 
gradually expose the details of the system. Complexity is 
managed through visibility control, which is obtained by 
a host of options for scaling object process diagrams. The 
ease of application of object-process analysis to the case 
in point suggests that it can be successfully applied to 
analyze, understand and wmmunicate complex software 
systems such as the IUE Project. 

INTRODUCTION 

The domain of machine vision involves a host of 
problems, algorithms and techniques dealing with all 
aspects of capture and conversion of scenes into 
meaningful interpretations. Frequently, pattern 
recognition subsvstems are embedded within comouter 
vision systems. T%e latter, in turn, may be subsystehs in 
yet more complex systems, such as industrial inspection, 
autonomous navigation and robotics. Machine vision 
systems feature two main characteristics. The first is 
system complexity, and the second is the balance between 
structure and behavior. 

The structure/behavior balance characteristics is due to 
the fact that machine vision systems have two main 
aspects: structural (static) and procedural (dynamic). The 
structural aspect pertains to the objects present in the 
systems and the long-term relations among them, such as 
aggregation-particularization (whole-part), generalization- 
specialization (gen-spec), and characterization. The 
procedural aspect relates to the time-varying behavior of 
the system, which is usually guided by algorithms, 
procedures or routines. Even though most of the behavior 
of a machine vision system can be described in terms of 
algorithms, the traditional tools for algorithm description, 

such as flow diagrams or structured pseudocode, lack 
DrODer rmresentation of the obiects involved. Since most 
machine ;ision systems feature substantial structural and 
behavioral aspects, understanding them requires a 
representation that strikes a balance b%tween structure and 
behavior within a unified reoresentation scheme. Obiects 
and processes should hav; adequate weight, and the 
procedural relations that link objects to processes should 
be explicitly stated. 

The complexity characteristic of computer vision 
systems implies that they have a large number of objects 
and processes. Both the objects and the processes are at 
various abstraction levels. At the lowest level, objects are 
as simple as pixels, variables, parameters, etc., while 
processes can be a pixel neighborhood averaging or 
convolving an image. Intermediate processes are of the 
nature of vectorization, segmentation, skeletonization and 
edge detection. Accordingly, objects at this level are 
regions, edgels, arcs, skeletons and other recognized 
segments leading to high-level understanding. At the 
highest level, the objects are stationary or moving 3-D 
structures, decision about a robot's trajectory change for 
obstacle-avoidance, acceptance or- rejection of an 
ins~ected oroduct. etc. Freauentlv. obiects from different 
abitractih levels interact 'becaisk & the inherent non- 
linear nature of the pattern recognition process. For 
example, many computer vision systems have feedback 
cycles that enable hypotheses from higher levels to be 
tested at lower levels. 

The object-process analysis (OPA) can be used to fully 
understand computer vision systems, explain them, and 
wmmunicate their analysis results. The OPA paradigm 
extends object-oriented analysis to meet the challenge of 
handling complexity and striking a balance between a 
system structure and behavior. OPA combines the 
representation of the structure and behavior of machine 
vision systems within an integrated framework and 
enables complexity management by scaling within this 
framework. 

As a case study, a portion of the Image Understanding 
Environment (IUE) Project that deals with the design and 
implementation of image objects and their related methods 
is analyzed and presented using OPA. 

SYSTEM ANA1,YSIS PARADIGMS 

First attempts in system modeling concentrated on the 
dynamics of the system. A notable example of these early 
approaches is the data flow diagram (DFD) method I De 
Marco, 19781, emphasizing processes as the major theme 
of the analysis. Only later approaches, e.g., entity- 
relationship diagrams IChen, 19761 and object-orientation 
( 0 0 )  [Coad and Yourdon, 1991 ; Embley, 1992; Shlaer, 
1992; Rumbaugh, 1991; Nerson, 19931 put objects at the 
center of the analysis. 



The object-oriented methodology is the currently 
accepted paradigm for system analysis, design and 
programming. It is built on the premise that every thing in 
any domain can be represented as an object. Processes 
(referred to as "methods" or "services") are encapsulated 
within objects and are activated via messages passed 
among objects. This "objectification" of the universe is 
adequate for describing the structure of a system, but it 
lacks appropriate tools to explicitly model the dynamic, 
procedural aspect of systems. To model the system's 
behavior, 00 methodologies use flow charts [Coad, 
199 11, DFD or some variation thereof, such as Action 
DFD [Shlaer, 19921, state charts [Rumbaugh, 19911, or 
a combination of these methods. These methods are 
generally not directly related to the object model. 
Consequently, the analyst is forced to separate structure 
from behavior in the analysis process. The results of the 
analysis are also communicated separately using different 
diagramming methods and symbol sets. This is 
unnatural, because in reality objects and processes go 
hand in hand and are inseparable: Objects are created, 
changed and destructed by processes, and processes have 
no meaning without the objects upon which they act. 

The integration between structure and behavior within 
the system is of part~cular significance in computer vision 
systems, because almost by definition all machine vision 
systems deal with objects-scenes, images, transforms 
and interpretations, and the processes that convert one 
type of object to the other-imaging, scanning, image 
processing, recognition, etc. 

OBJECT-PROCESS ANALYSIS 

Object-process analysis (OPA) [Dori et al., 1994; 
Dori, 1995 1 is a superset of OOA that has been designed 
to respond to the two main challenges of systems analysis 
discussed above: (1) integration between structure and 
behavior, and (2) provision of tools for complexity 
management. To meet the first challenge, OPA is based 
on the description of how objects interact with each other 
through processes. This provides the basis for the 
structurdbehavior integration. The second challenge is 
met by scaling, which enables controlling the visibility 
and level of detail of objects and processes. Scaling is a 
com~lexitv management tool. that works in both 
dir&tions.'up-scaGng (zooming-in) and down scaling 
(zooming-out) increases and decreases the level of detail, 
respectiGly. 

The universe consists of a collection of things. Things 
are objects and processes, and may be simple or 
compound. Simple (atomic) things cannot be 
decomposed into things nor are they characterized by 
other things. Compound things consist of other things 
andlor specialize into other things andlor are characterized 
by other things. The universe gf interest is a subset of the 
universe that is relevant to the system under 
consideration. Its modeling is guided by two 
complimentary aspects: structural and procedural. The 
structural aspect explains what are the objects in the 
universe of interest that play a meaningful role in the 
system under consideration, and how they relate to each 
other structurally, i.e. in the long run. The structural 
aspect pertains to such questions as which is the whole 
and what are its parts, which object is the general and 
what are its specializations, etc. The procedural aspect 
explains how the objects in the universe of interest 
behave and how they interact with each other through 
processes. It provides a time-varying image of how 
processes affect object states, including their construction 
and destruction. 

An object is a persistent thing which is constructed 

(generated), changed and destructed (eliminated) by one 
or more processes. A process is a transient thing which 
requires one or more objects to enable its occurrence and 
affects at least one object (possibly an enabling object). A 
feature is a thing that characterizes a higher-level thing. A 
feature is related to the class which it characterizes 
through a charactenmion relation. 

A class is the set of all the things that are characterized 
by the same set of features. An object (process) class is 
the set of all the objects (processes) that are characterized 
by the same set of features. An object (process) is a 
typical member of the object (process) class to which it 
belongs. An instance is a particular member of a class. 
Features are attributes and services. An attribute (service) 
is an object (process) class that characterizes a higher 
level class. Being an object class, an attribute has a 
number of instances (legal values). At any given point in 
time, the state of an object is the set of attribute values 
that are valid at that time. 

A major benefit of OPA is its ability to handle 
complexity through visibility control. Controlling 
visibility of analysis and design details is done via a host 
of scaling options. Each compound thing, which is called 
seed in the context of scaling, can be scaled up to yield 
an embedded object-process diagram, called plant, in 
which the inner structure and behavior of the seed is 
exposed. Conversely, a collection of things-the plant- 
can be scaled down to a seed, thereby obtaining a higher- 
level, more compact view of the system. Hence, the 
instances of the attribute direction of scaling are "up" and 
"down." The second attribute of scaling, seed 
preservation. has three instances: (1) no seed 
preservation, with explosion for up-scaling and 
implosion for down-scaling, (2) background seed 
preservation, with blow-up and shrinking, and (3) root 
seed preservation, with unfolding and folding. 

THE IMAGE UNDERSTANDIN(; 
ENVIRONMENT 

The Image Understanding Environment (IUE) project 
[IUE, 19941 is a five year program, sponsored by the US 
Defense Advanced Research Project Agency (DARPA), 
to develop a common software environment for the 
development and algorithms and application systems for 
image understanding. The primary purpose of the IUE is 
to facilitate exchange of research results within the Image 
Understanding community by providing a standard 
interface for the development and sharing of code. It is 
designed to support evolution of IU approaches and an 
effective programming environment for rapid 
proptotyping. As the IUE Overview Document notes 
[IUE, 19941, "the central approach to the design of the 
IUE is the use of object-oriented design principles." 

To demonstrate how OPA can be applied to facilitate 
the analysis and design of IUE, we selected images 
which are "among the most fundamental objects in image 
understanding, since they are the ultimate source from 
which all other iconic and symbolic representations are 
computedn [IUE, 19941. Chapter 4 of the IUE Class 
Definition [IUE, 1994a1 provides a detailed description of 
the image classes in IUE. To satisfy a number of design 
goals, IUE distinguishes four types of classes: generic 
classes, data classes, interface classes and implementation 
classes. All but the implementation classes are abstract 
classes designed to inherit attributes to the implementation 
classes. Figure 1 is the Object-Modeling Technique 
(OMT) [Rumbaugh, 19911 image class hierarchy 
diagram, provided in the IUE documentation IIUE, 
1994al. The diagram contains 32 classes divided into 
four types with all the relations among them. The 



complexity of this OMT diagram makes it difficult to 
follow and understand. In an attempt to clarify it, lacking 
formal tools for complexity management, dashed lines 
separate the 32 classes into four types, and the name of 
each class type is written within the area containing the 
corresponding classes. 

THE IMAGE CLASS HIERARCHY 

Figure 2 is a toplevel object-process diagram (OPD) 
describing the four class types and the structural relations 
among them. Each class type is itself an object class-a 
seed-which contains the classes belonging to the 
corresponding type. This high-level view enables easy 
tracking of the relations among class types. As Figure 2 
shows, the only structural relation in this OPD happens to 
be the generalization-specialization (gen-spec, or "is-a") 
relation, which is denoted by a blank triangle whose apex 
and base are connected to the generalized and specialized 
classes, respectively. This corresponds with OMT 
[Rumbaugh, 19911 and OOSE [Embley, 19921. The 
meaning of direct and indirect gen-spec relations is 
explained below. 

f i e  gen-spec relation gives rise to inheritance, which 
is one of the cornerstones of object-oriented analysis and 
design. Inheritance means that any feature (attribute or 
service) that characterizes the general class also 
characterizes all of the specialized classes. The features 
are inherited from the ancestor (general) class to the 
descendents (specialized classes). Each specialized class 
may have its own features in addition to the ones it 
inherits from the general, ancestor class. Since 
inheritance spans across any number of generations, the 
result of the overall structure is a directed acyclic graph. 
whose nodes and edges are the classes and the gen-spec 

relations, respectively. To remain faithful to the 
description in Figure 1, we must distinguish between two 
types of gen-spec relations, direct and indirect, as shown 
in the legend of Figure 2. The direct gen-spec relation is 
the common one and is used when the specialized class 
acquires directly all the features of the the general class. 
The indirect gen-spec relation is used when only a proper 
subset of the classes which are specializations or parts of 
the specialized class acquire all the features of the the 
general class. Applied to the image classes in IUE, the 
OPD in Figure 2 shows, the source of all the image 
classes is IUE-object and the destination is 
implementation-class. IUE-object inherits its 
features directly to generic-class and to data-class. 
Interface-class inherits directly from generic-class 
and indirectly from data-class. Finally, 
implementation-class inherits indirectly from both 
data-class and interface-class. These fundamental 
relations among the classes are very important to note. 
However, deducing them from the OMT class hierarchy 
of Figure 1 is not straightforward because of the 
multitude of connections among the 32 classes in the 
diagram. In the top-level OPD of Figure 2, which has 
only five classes, those relations are explicitly expressed 
and easily tracked. 

Next, we wish to refine the top-level OPD. To this 
end, we scale it up. As noted, up-scaling can be done in 
three ways: blow-up, unfolding and explosion. We start 
by applying blow-up. However, blowing up all the four 
high-level classes at once would result in an OPD which 
is still too complex, because it would include all 32 
classes of Figure 1. Therefore, we blow up only 
generic-class. The resulting OPD is shown in Figure 
3. The class that was blown up is shown in a gray thick 
blow-up frame, with its name in a corner. lnstde the 

. I . . . . . . . . . 
. 

A Data Classes 

NE-shamble- 9 , 
ia .p_d. tab~d-bi t  ILIE.sin(k_ I 

/ 

1UE.T.S- NE-TS-3D-+* sequence-image 

- 
, T T 7 ' ~ 1 4 r '  , ;< I l IE~omplex_  IL'E.RGB. I l lETS-  

vn.p-ruple image-ruplr im.(r-rqwnrr 

I 

I 
I 
I Implementation Classes 

Figure I. lhe Object-Modeling Technique (OMT) IUE image clars hierarchy /IUE, 1994~1 



blow-up frame are the lower-level classes belonging to 
the class that was scaled up. To verify that the upscaling 
operation was done correctly, note that if we apply the 
inverse operation of blow-up, called shrinking, we get 
back the OPD of Figure 2. 

Indirect gen-spec4 1 
relation 

,- 71 generic-class 

implemen tation-class 

Figure 2. A toplewl OPD ofthe IUE image class hierurchv 

Figure 3 is in accord with the "Generic Classes" 
poltion of the OMT diagram of Figure 1. generic- 
image specializes into four types: stereo-image, 
mosaic-image, pyramid-image and generic- 
image-collection. 

As in OOSE [Embley et al., 19921, the black triangle 
denotes the aggregation-particularization (whole-part) 
structural relation. Each one of these four image types 
consists of a number of generic-images. The number 
is denoted by the participation constraint written along the 
aggregation link. Thus, the number 2 means that stereo- 
image consists of exactly two generic-images, while 
I ..m implies a relation of one-to-many between either one 
of mosaic-image, pyramid-image and generic- 
image-collection and generic-image. 

Having understood the generic-imgae specializa- 
tions, we can now shrink back the blow-up frame of 
generic-imgae and blow up other classes. This time we 
blow up data-class and interface-class. The result is 
shown in Figure 4, where the seven sharable-image- 
data-band specializations which appear stacked on the 
left hand side of Figure 1 have been omitted to enhance 
readability. Since the parts of data-class and the 
specializations of interface-class are now specified, we 
can specify exactly the direct gen-spec relations between 
the lower-level classes such that the indirect gen-spec link 
between data-class and interface-class (denoted by 
the dashed line dashed) is no longer needed, and is 
replaced by the solid line denoting the direct gen-spec link 
between single-band-data and scalar-image. In 

Figure 3. An OPD resulting from blowing up generic- 
class in the toplevel OPD of Figure 2 

Figure 1, single-band-data is linked separately to 
both 2D-scalar-image and 3D-scalar-image, but the 
latter two are specializations of scalar-image, it is more 
correct from a software engineering viewpoint and more 
economic in graphic symbols to establish the gen-spec 
link at the highest level possible. 

As noted, blow-up is one of the three possible up- 
scaling operations, the other two being unfolding and 
explosion. The difference between blow-up and 
unfolding is that while in blow-up the seed (the class that 
is scaled up) remains in the background of the plant (the 
scaled-up OPD) with the blow-up frame enclosing all the 
lower level classes, in unfolding, the seed remains as the 
root of the aggregation hierarchy. Explosion is similar to 
blow-up, except that rather than having the blow-up 
frame with the blown-up class name in the plant, neither 
the frame nor the name appear in the plant. Although the 
difference among the different types of up-scaling is 
graphical rather than semantic, applying various types of 
up-scaling to the same system may provide important 
insight into the structural relations which can lead to more 
economic and concise modeling, as we show below. 
Figure 5 shows unfolding of the top-level OPD of Figure 
2. It is a combination of figures 3 and 4, where instead of 
blow-up we applied unfolding. 
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Comparing Figure 3 and 4 to Figure 5, we see that 
instead of the seed appearing within the blow-up frame in 
the plant, each one of the three classes that were unfolded 
now appears in the plant as the root of the aggregation 
tree. Note that the gen-spec links, which connected the 
blow-up frames of data-class and interface-class, now 
originate from the corresponding classes themselves, 
such that figures 3 and 4 are semantically identical to 
Figure 5. Examining the aggregation trees of Figure 5, 
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we see that the root of each tree has just one outgoing 
edge with the whole-part relation: generic-class has 
just generic-image as its part, data-class has just 
sharable-image-databand, and interface-class has 
just simple-image as its part. This suggests that the 
insertion of generic-class, data-class and interface- 
class may be redundant in the first place. Looking back 
at Figure 1, we see that this is indeed the case with these 
three classes but not with implementation-class. 
Hence, we redesign the toplevel image class hierarchy of 
Figure 2 as shown in the OPD of Figure 6. Finally, we 
blow-up implementation-class and get the OPD of 
Figure 7, where the complete gen-spec lattice, as 
specified in Figure 1, is shown. 

THE GENERIC-IMAGE CLASS 

We continue our analysis by looking into the details of 
the object generic-image, which is the root of the 
generic class hierarchy. Figure 8 is a detailed portion of 
the class hierarchy depicted in the blow-up frame of 
generic-class in Figure 3. Each class appears in a box 
divided into one, two or three compartments. If only one 
compartment exists, then it contains just the class name, 
as in generic-image-collection. The thick line under 
the generic-image-collection class denotes the fact 
that it has neither specific attributes nor specific methods. 
If there are two compartments, then the first contains the 
class name and the second-the class attributes, as in 
mosaic-image, which has the attribute image-set : set- 
of-generic-images. If a third compartment exists, it 
holds the list of the class methods (services), as in 
stereo-image, which has three attributes and three 
mcthods. 

We have adopted the same font conventions and 
C +  +like syntax used in [IUE, 1994al: class names are in 
boldface roman or times (e.g., generic-image), 

attributes are In tlmes italic font followed by a column 
followed by an object name (e.g. srero-sensor: sensor- 
model), method names are in sans-serif or helvetica font 
and preceded by a double semi column followed by the 
method input in parentheses, semicolon and the output 
(e.g., ::get-window(t h i  s : generic-image, 
l o c a t i o n  : Id-array-of-int, window:  value): 
value) , and pointers are in typewriter or courier font 
followed by a semicolon (e.g., l o c a t i o n : ) .  

A typical method specification looks as follows: 
::pixel-in-bounds ( t h i s  : simple-image, 

l o c a t  i o n  : Id-array-of-int): boolean 
The interpretation of this specification is that ::pixel- 

in-bounds is a method of the object class simple- 
image, which takes as input Id-array-of-int, which is 
a one-dimensional array of integers, denoting the pixel 
location, and returns boolean, denoting whether or not 
the the pixel is within the image bounds. 

Section 4.6 of the IUE Class Definitions [IUE, 1994al 
is the image class definitions. Subsection 4.6.1, which 
holds 3.5 pages, describes the details of all the generic 
classes. The equivalent of these pages (excluding some 
documentation) is given in Figure 8, which provides 
more details about the structural relations among the 
classes than what is given in the IUE Class Definitions 
document. The latter specifies only superclasses and 
subclasses for each class, i.e., it refers to the gen-spec 
relations, but gives no detail about the whole-part 
relation, which is specified in Figure 8. 

Using the above IUE conventions, all the generic 
image class hierarchy with all the attributes and methods 
are compactly and concisely recorded in their proper 
locations in Figure 8 to reflect superclasses, subclasses, 
whole-part relations with the participation constraints. 
The class generic-image has no attributes and eight 
methods, all of which are inherited to all the four 
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Attributes in IUE are classified into hard attributes and 
soft attributes. Hard attributes are assigned to the class as 
it is constructed, while soft attributes are computed 
results that are recorded to save unnecessary 
computations. Stereo-image has three hard attributes: 
left-image and right-image, each of which is a pointer to 
generic-image, and Stereo-sensor, which is a sensor- 
model. Since generic image is a generalization of 
simple-image, stereo-image, pyramid-image, 
mosaic-image and generic-image-collection, it is 
possible to construct a stereo image each of whose left 
and right images are themselves pyramid-images, for 
example. This is a very good generalization. However, 
there should be a constructor of stereo-image which 
will prevent the generation of a stereo-image with left and 
right images of different classes or with two stereo 
images. No such constructor is listed in the IUE Class 
Definition document. 

CONSTRUCTORS AND METHODS 

Figure 9 shows the generalization hierarchy of 
generic-image, simple-image and scalar-image 
and the methods associated with each class. The methods 
::getlset pixel and ::getlset window of simple-image 
are designed to get and set the value of a single pixel or a 
window (a rectangular array of pixels), respectively. ld-  
array-of-int is a one-dimensional array of integers-a 
vector of integers-which is used to store and pass the 
location of a pixel or a window or the extents (size) of an 
image. Therefore Id-array-of-int has is of length 2 
for 2D images and 3 for 3D images. 

A scalar-image is an image known to consist of 
pixels which are scalars. Therefore, it is possible to 
devise for this class specialized methods that make pixel 
access more efficient. Hence, it contains methods like 
::get-pixel-i and ::get-pixel-f, which are used when the 
image is known to consist of integer and float data types, 
respectively. The corresponding ::set-pixel methods do 
not require the suffix -i or -f, as their input parameter list 
already contains the appropriate type. This is also true for 
the two ::get-pixel methods that have ref(int) and 
ref(float) in their input parameter list. 
simple-image and scalar-image are classified as 
interface classes. This means that, like generic-image, 
they are abstract classes, i.e., they are not instantiable- 
no instances can be created for these classes. The 
simplest implementation, instantiable class is 2d-scalar- 

image. Therefore it is the first one which has constructor 
methods-methods used to construct new instances of 
the class. Figure 10 is an OPD (object-process diagram) 
that depicts the three possible methods by which an 
instance of 2d-scalar-image can be constructed. 
Constiuction is a process, which is denoted by an ellipse. 
The rest are objects, which are denoted by boxes. Arrows 
incoming to and outgoing from a process are efect links, 
denoting the object(s) required for the process to occur 
and the object(s) resulting from the process occurrence. 
Solid and dashed lines connecting incoming effect links 
denote a logical and and a logical or connector, 
respectively. Thus, Figure 10 expresses the fact that the 
three constructors: (1) 2d-scalar-image(f ile - name : 
iue-string), (2) 2d-scalar-image(x : int, y : int, 
datatype : generic-image::IYxel-Type), and (3) 
2d-scalar-image (PIS : const pointer (noniue 
(IMAGE-STRUCT)) are alternative, and that while 
constructors (1) and (3) require one object input each, 
constructor (2) requires three object inputs: two objects, 
x and y of the class int for the image size and one 
object, datatype of the object generic-image 
::Pixel-Type. If no logical connector connects 
incoming effect links, then the default is logical and: all 
input classes must participate in the process (which may 
be an abstract process,a method, a constructor, or an 
operator). 

Figure 11 is an OPD of the complete set of the 39 
methods of 2d-scalar-image, enumerated in [IUE, 
1994al. The reason Figure 1 1 shows only 14 ovals is that 
many methods are represented through inheritance, 
thereby reducing the number of methods in the OPD by a 
factor of almost 3. The equivalent textual descriptiofs in 
I IUE, l994al occupies almost four pages. 

Since the OPD describes methods of 2 d - s ~ ~ l i l r -  
image, each method has one effect link incoming from 
the object this : 2d-scalar-image, which appears at 
the top left corner of the OPD. Each methods has in 
addition at least one incoming effect link. For example, 
the method ::pixel-in-bounds accepts also position, 
which, as the legend specifies, is a generalization of 
coordinates and locat ion: Id-array-of-int. 
coordinates is an aggregation of x: int and y: 
int. Neither position nor coordinates appear 
in the IUE Class Definitions. Therefore they are not 
preceded by a semicolon. Rather, they were added to take 
advantage of generalization and aggregation, respective1 y, 
for obtaining a high-level view of the set of methods and 
reducing the amount of required documentation. Thus, 
due to inheritance, the arrow outgoing from position 
into the ::pixel-in-bounds oval stands for the following 
two ::pixel-in-bounds methods, specified in [IUE, 
1 994al: 

(1)  ::pixel-in-bounds (this : 2d-scalar-image, 
locat ion : Id-array-of-int): boolean, and 
(2) ::pixel-in-bounds (this : 2d-scalar-image. 

x : int, y : int): boolean. 
The double-headed arrow is a reflective effect link: the 

result of the method is fed back into the object which was 
provided as an input. For example, as the OPD of Figure 
11 specifies, the assignment operator, ::operator=, gets 
the objects this : 2d-scalar-image and im: 2d- 
scalar-image, and assigns this : 2d-scalar-image 
to im : 2d-scalar-image. 

An effect link surrounded by square brackets is 
optional. Thus, the OPD specifies two ::get-copy-slice 
methods: 

(1) ::get-copy-slice (this : 2d-scalar-image, 
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Figure 8. The attributes and methods o f  generic-image and its specializations 

generic-image 

::float-pixel* t h i a  ,generic-image: Pixel-Type 
::int32-pixel* t h i s  t generic-image: Pixel-Type 
::uint8-pixel* this r generic-imago: Pixel-Type 
::int8-pixel* t h i s  generic-imago: Pixel-Type 
::intl6-p~xel* t h i s t  generic-illlnge: Pixel-Type 
::uintl6-pixel* t h i s *  generic-image: Pixel-Type 
::bit-pixels(this r generic-imago: Pixel-Type 
::new-image-tom-tiq t h i s  r generic-image 

name r sirins: pointcr(generic-image) 

simple-image A 
mosaic-image 

image-set : set-of-~eneric-image 

I I generic-image-co~~ection 

2 - s t e r e i m a g e  

&#-image : pointerkeneric-image 
righaimage : pointerkeneric-imaR$ 
stereo-semor : sensor-model 
::stero-sensor( t h i s  z stero-image: sensor 
::left-sensor-coordinate-system 

(thiststero-imago: coordinate-system 
::right-sensor-coordinate-system 

(thisrstero-i~nago: coordinate-system 

l . . m  

I.. m  pyramid-image 

image-pymmid : sequence-ofgeneric-image 

l . . m  



of  f x :  int, of  f y :  int, copy-  image: 2d-scalar- 
image): 2d-scalar-image, and 

(2) ::get-copy-slice ( t h i s  : 2d-scalar-image, 
of  f x :  int, of  f y :  int, x s t e p :  int, y s t e p :  int, 
c o p y  - i m a g e  : 2d-scalar-image): 2d-scalar- 
image. 

As the documentation states, the first method fills data 
into copy- image ,  starting from [ o f f x ,  of  f y ]  , 
while the second does the same, stepping [ x s t e p ,  
y s t e p l .  

The continuation of Chapter 4 of the IUE Class 
Definition has the definitions of the classes 3d-scalar- 
image, complex-image, and the other implementation 
classes, each with over 4 pages of documentation (the 
entire Class Definition Document [IUE, 1994al is 338 
pages). The vast majority of the methods for these classes 
is identical or almost identical to that of 2d-scalar- 
image. For example, the two ::get-copy-slice methods 
for 3d-scalar-image which are completely analogous to 
those of 2d-scalar-image are: 

( I )  ::get-copy-slice ( t h i s  : 3d-scalar-image. 
o f f x :  in t ,o f fy :  i n t , o f f z :  int ,copy-image: 
.Id-scalar-image): 2d-scalar-image, and 

(2) ::get-copy-slice ( t h i s  : 3d-scalar-image, 
o f f x :  in t ,o f fy :  i n t , o f f z :  i n t , x s t e p :  int, 
ys tep . :  int, z s t e p :  int, c o p y -  image:  3d- 
scalar-image): 3d-scalar-image. 

were copied without alteration (including the wrong 
names s t e p x  and s t e p y ,  instead of x s t e p  and 
y s t  ep),  from the 2d-scalar-image documentation. 
Errors of this type are unfortunately not rare in the 
document. Working with object-process diagrams and the 
abstractions of d i s p l a c e m e n t  and s t e p ,  it is 
possible to avoid both the redundant documentation and 
the susceptibility to errors this redundancy is bound to 
cause. It is not clear why, at least conceptually, ::get- 
copy-slice is not defined at the level of scalar-image, 
and inherited with the proper dimension to 2d-scalar- 
image and to 3d-scalar-image. 

Machine vision systems feature complexity and a 
substantial behavioral aspect beside the structural one. 
The work suggests that a holistic view of machine vision 
systems, which is sometimes set aside, should be 
adopted. An object-process analysis (OPA) approach, 
which is an extension of object-oriented analysis, has 
been suggested as a methodology for analysis, 
representation and communication of machine vision 
systems. The main benefi t of OPA is presentation of the 
structural and behavioral aspects of a system within a 
single, coherent frame of reference at any level of detail 
without loss of consistency and links among the various 
abstraction levels. A small but fundamental subset of the 
documentation of the Image Understanding Environment 

While it is apparent that these methods are mere (IUE) project was anahzed as a case in point to 
extensions of the corresponding methods from 2D to 3D, demonstrate how OPA can be used both to exhibit within 
the documentation [IUE, 1994a, p.701 erroneously states one frame of reference the systems structure and behavior 
that the first method "fills data into c o p y -  image,  and to manage the inherent complexity of such systems. 
starting from [of f x ,  o f f  y I ," while the second does The analysis is presented in a top-down fashion, showing 
the same, "stepping Is t e p x ,  s t  epyl  ". The o f f  z concurrently objects in the system, how they relate to 

each other structurally and how they interact with each and the s t e p z  were left out, apparently because they other processes. 

generic-image 

simple-image 

::get-pixel-p(thie : simple-image , locat ion : Id-array-of-int ): value (pixel-value ) 
::get-window( t h i e  : simple-image , locat ion : Id-array-of-int, window : value): value 
::set-pixel(this : simple-image , locat ion : Id-array-of-int, pixel  : pixel-value ):pixel-value 
::set-window( t h i s  : simple-image , loca t ion  : Id-array-of-int, window : valrle): value 
::get-extents( t h i s  : simple-image ): value (Id-array-of-int ) 
::get-extents( t h i s  : simple-image, extents  : Id-array-of-int ): Id-array-of-int 
::pixel-in-bounds( t h i s  : simple-image , locat ion : Id-array-of-int ): boolean 

scalar-image 

::new-imge( t h i s  : scalar-image ,im: const noniue (KBV-Image-Ptr )): 
pointer (scalar-image ) I' constructor ' 

::get-pixel-( t h i s  : scalar-image , locat ion : Id-array-of-int ): int 
::get-pixel-{ t h i s :  scalar-image , locat ion : I d-array-of-int ): float 
::get-plxel(this : scalar-image , locat ion : Id-array-of-int, pixel  : ref (id)): ref (int) 
::get-pixel(this : scalar-image , locat ion : Id-array-of-int, pixel  : ref (float )): ref (flaot ) 
::set-pixef t h i s  : scalar-image , locat ion : Id-array-of-int, pixel  : int): int 
::set-pixer t h i e  : scalar-image , locat ion : Id-array-of-int, pixel  : float ): float 
::get-datatyp< t h i s  : scalar-image ): int 
::save-to-KBV-file t h i s  : scalar-image , s t r i n g *  iue~tring ): float 

Figure 9. The hierarchy of generic-image, simple-image and scalar-image and their associated 
methods 
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Figure 10. The three different constructors of 2d-scalar-image 

m: d(noniue (ostrem )) 

f -1 ::operator= im: M-scalar-image 1 

Figure 11. The complete set of methods of 2d-scalar-image 



The top-down presentation was made possible by the 
use of scaling. Scaling is a powerful tool for complexity 
management, as it provides for controlling the visibility 
and level of detail of objects and processes of interest. As 
we proceed down the hierarchy, we get from the high- 
level, abstract classes to actual implementation classes. At 
this low level, OPA extends the set of symbols to cover 
cases, such as reflective and optional effect links, to 
abstract and compact the documentation. The resulting 
documentation is a set of object-process diagrams that are 
about threefold more compact. The set of OPDs provide a 
comprehensive, graphic representation of portions of the 
system that are at the focus of interest, while keeping the 
reader oriented as to where in the system the focus is on. 
This way, the 'large picture" is not lost in a myriad of 
minute details. The graphic representation potentially 
inspires ideas for further abstractions that can be 
implemented in code, such as position, coordinate and 
step in IUE. 
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