
MVA'94 IAPR Workshop on Machine Vision Applications Dec. 13-1 5. 1994. Kawasaki

ANALYSIS AND REPRESENTATION OF COMPUTER VISION
SYSTEMS BY THE OBJECT-PROCESS METHODOLOGY

Dov Dori
Department of Information Systems Engineering

Faculty of Industrial Engineering
Technion, Israel Institute of Technology

Haifa 32000, Israel

ABSTRACT

Computer vision involves a host of problems,
algorithms and techniques dealing with all aspects of
capturing scenes and converting them into meaningful
interpretations. A computer vision system may include a
pattern recognition subsystem and be itself embedded
within a more complex system. Machine vision systems
feature a combination of complexity on one hand and a
balance between structure and behavior on the other
hand. Analysis and design of computer vision svstems
calls therefore for a metKodology that represents &ually
well structure and behavior within a unified frame of - - - ~ -

reference and has adequate tools for complexity
management. This paper discusses the object-process
analysis (OPA) as an approach to tackle this task.
Following the introduction of the basic OPA principles,
we use the Image Understanding Environment (IUE)
Project documentation to demonstrate the principles, use
and the benefits of the methodology. The result is a series
of consistent, inter-related object-process diagrams that
gradually expose the details of the system. Complexity is
managed through visibility control, which is obtained by
a host of options for scaling object process diagrams. The
ease of application of object-process analysis to the case
in point suggests that it can be successfully applied to
analyze, understand and wmmunicate complex software
systems such as the IUE Project.

INTRODUCTION

The domain of machine vision involves a host of
problems, algorithms and techniques dealing with all
aspects of capture and conversion of scenes into
meaningful interpretations. Frequently, pattern
recognition subsvstems are embedded within comouter
vision systems. T%e latter, in turn, may be subsystehs in
yet more complex systems, such as industrial inspection,
autonomous navigation and robotics. Machine vision
systems feature two main characteristics. The first is
system complexity, and the second is the balance between
structure and behavior.

The structure/behavior balance characteristics is due to
the fact that machine vision systems have two main
aspects: structural (static) and procedural (dynamic). The
structural aspect pertains to the objects present in the
systems and the long-term relations among them, such as
aggregation-particularization (whole-part), generalization-
specialization (gen-spec), and characterization. The
procedural aspect relates to the time-varying behavior of
the system, which is usually guided by algorithms,
procedures or routines. Even though most of the behavior
of a machine vision system can be described in terms of
algorithms, the traditional tools for algorithm description,

such as flow diagrams or structured pseudocode, lack
DrODer rmresentation of the obiects involved. Since most
machine ;ision systems feature substantial structural and
behavioral aspects, understanding them requires a
representation that strikes a balance b%tween structure and
behavior within a unified reoresentation scheme. Obiects
and processes should hav; adequate weight, and the
procedural relations that link objects to processes should
be explicitly stated.

The complexity characteristic of computer vision
systems implies that they have a large number of objects
and processes. Both the objects and the processes are at
various abstraction levels. At the lowest level, objects are
as simple as pixels, variables, parameters, etc., while
processes can be a pixel neighborhood averaging or
convolving an image. Intermediate processes are of the
nature of vectorization, segmentation, skeletonization and
edge detection. Accordingly, objects at this level are
regions, edgels, arcs, skeletons and other recognized
segments leading to high-level understanding. At the
highest level, the objects are stationary or moving 3-D
structures, decision about a robot's trajectory change for
obstacle-avoidance, acceptance or- rejection of an
ins~ected oroduct. etc. Freauentlv. obiects from different
abitractih levels interact 'becaisk & the inherent non-
linear nature of the pattern recognition process. For
example, many computer vision systems have feedback
cycles that enable hypotheses from higher levels to be
tested at lower levels.

The object-process analysis (OPA) can be used to fully
understand computer vision systems, explain them, and
wmmunicate their analysis results. The OPA paradigm
extends object-oriented analysis to meet the challenge of
handling complexity and striking a balance between a
system structure and behavior. OPA combines the
representation of the structure and behavior of machine
vision systems within an integrated framework and
enables complexity management by scaling within this
framework.

As a case study, a portion of the Image Understanding
Environment (IUE) Project that deals with the design and
implementation of image objects and their related methods
is analyzed and presented using OPA.

SYSTEM ANA1,YSIS PARADIGMS

First attempts in system modeling concentrated on the
dynamics of the system. A notable example of these early
approaches is the data flow diagram (DFD) method I De
Marco, 19781, emphasizing processes as the major theme
of the analysis. Only later approaches, e.g., entity-
relationship diagrams IChen, 19761 and object-orientation
(0 0) [Coad and Yourdon, 1991 ; Embley, 1992; Shlaer,
1992; Rumbaugh, 1991; Nerson, 19931 put objects at the
center of the analysis.

The object-oriented methodology is the currently
accepted paradigm for system analysis, design and
programming. It is built on the premise that every thing in
any domain can be represented as an object. Processes
(referred to as "methods" or "services") are encapsulated
within objects and are activated via messages passed
among objects. This "objectification" of the universe is
adequate for describing the structure of a system, but it
lacks appropriate tools to explicitly model the dynamic,
procedural aspect of systems. To model the system's
behavior, 00 methodologies use flow charts [Coad,
199 11, DFD or some variation thereof, such as Action
DFD [Shlaer, 19921, state charts [Rumbaugh, 19911, or
a combination of these methods. These methods are
generally not directly related to the object model.
Consequently, the analyst is forced to separate structure
from behavior in the analysis process. The results of the
analysis are also communicated separately using different
diagramming methods and symbol sets. This is
unnatural, because in reality objects and processes go
hand in hand and are inseparable: Objects are created,
changed and destructed by processes, and processes have
no meaning without the objects upon which they act.

The integration between structure and behavior within
the system is of part~cular significance in computer vision
systems, because almost by definition all machine vision
systems deal with objects-scenes, images, transforms
and interpretations, and the processes that convert one
type of object to the other-imaging, scanning, image
processing, recognition, etc.

OBJECT-PROCESS ANALYSIS

Object-process analysis (OPA) [Dori et al., 1994;
Dori, 1995 1 is a superset of OOA that has been designed
to respond to the two main challenges of systems analysis
discussed above: (1) integration between structure and
behavior, and (2) provision of tools for complexity
management. To meet the first challenge, OPA is based
on the description of how objects interact with each other
through processes. This provides the basis for the
structurdbehavior integration. The second challenge is
met by scaling, which enables controlling the visibility
and level of detail of objects and processes. Scaling is a
com~lexitv management tool. that works in both
dir&tions.'up-scaGng (zooming-in) and down scaling
(zooming-out) increases and decreases the level of detail,
respectiGly.

The universe consists of a collection of things. Things
are objects and processes, and may be simple or
compound. Simple (atomic) things cannot be
decomposed into things nor are they characterized by
other things. Compound things consist of other things
andlor specialize into other things andlor are characterized
by other things. The universe gf interest is a subset of the
universe that is relevant to the system under
consideration. Its modeling is guided by two
complimentary aspects: structural and procedural. The
structural aspect explains what are the objects in the
universe of interest that play a meaningful role in the
system under consideration, and how they relate to each
other structurally, i.e. in the long run. The structural
aspect pertains to such questions as which is the whole
and what are its parts, which object is the general and
what are its specializations, etc. The procedural aspect
explains how the objects in the universe of interest
behave and how they interact with each other through
processes. It provides a time-varying image of how
processes affect object states, including their construction
and destruction.

An object is a persistent thing which is constructed

(generated), changed and destructed (eliminated) by one
or more processes. A process is a transient thing which
requires one or more objects to enable its occurrence and
affects at least one object (possibly an enabling object). A
feature is a thing that characterizes a higher-level thing. A
feature is related to the class which it characterizes
through a charactenmion relation.

A class is the set of all the things that are characterized
by the same set of features. An object (process) class is
the set of all the objects (processes) that are characterized
by the same set of features. An object (process) is a
typical member of the object (process) class to which it
belongs. An instance is a particular member of a class.
Features are attributes and services. An attribute (service)
is an object (process) class that characterizes a higher
level class. Being an object class, an attribute has a
number of instances (legal values). At any given point in
time, the state of an object is the set of attribute values
that are valid at that time.

A major benefit of OPA is its ability to handle
complexity through visibility control. Controlling
visibility of analysis and design details is done via a host
of scaling options. Each compound thing, which is called
seed in the context of scaling, can be scaled up to yield
an embedded object-process diagram, called plant, in
which the inner structure and behavior of the seed is
exposed. Conversely, a collection of things-the plant-
can be scaled down to a seed, thereby obtaining a higher-
level, more compact view of the system. Hence, the
instances of the attribute direction of scaling are "up" and
"down." The second attribute of scaling, seed
preservation. has three instances: (1) no seed
preservation, with explosion for up-scaling and
implosion for down-scaling, (2) background seed
preservation, with blow-up and shrinking, and (3) root
seed preservation, with unfolding and folding.

THE IMAGE UNDERSTANDIN(;
ENVIRONMENT

The Image Understanding Environment (IUE) project
[IUE, 19941 is a five year program, sponsored by the US
Defense Advanced Research Project Agency (DARPA),
to develop a common software environment for the
development and algorithms and application systems for
image understanding. The primary purpose of the IUE is
to facilitate exchange of research results within the Image
Understanding community by providing a standard
interface for the development and sharing of code. It is
designed to support evolution of IU approaches and an
effective programming environment for rapid
proptotyping. As the IUE Overview Document notes
[IUE, 19941, "the central approach to the design of the
IUE is the use of object-oriented design principles."

To demonstrate how OPA can be applied to facilitate
the analysis and design of IUE, we selected images
which are "among the most fundamental objects in image
understanding, since they are the ultimate source from
which all other iconic and symbolic representations are
computedn [IUE, 19941. Chapter 4 of the IUE Class
Definition [IUE, 1994a1 provides a detailed description of
the image classes in IUE. To satisfy a number of design
goals, IUE distinguishes four types of classes: generic
classes, data classes, interface classes and implementation
classes. All but the implementation classes are abstract
classes designed to inherit attributes to the implementation
classes. Figure 1 is the Object-Modeling Technique
(OMT) [Rumbaugh, 19911 image class hierarchy
diagram, provided in the IUE documentation IIUE,
1994al. The diagram contains 32 classes divided into
four types with all the relations among them. The

complexity of this OMT diagram makes it difficult to
follow and understand. In an attempt to clarify it, lacking
formal tools for complexity management, dashed lines
separate the 32 classes into four types, and the name of
each class type is written within the area containing the
corresponding classes.

THE IMAGE CLASS HIERARCHY

Figure 2 is a toplevel object-process diagram (OPD)
describing the four class types and the structural relations
among them. Each class type is itself an object class-a
seed-which contains the classes belonging to the
corresponding type. This high-level view enables easy
tracking of the relations among class types. As Figure 2
shows, the only structural relation in this OPD happens to
be the generalization-specialization (gen-spec, or "is-a")
relation, which is denoted by a blank triangle whose apex
and base are connected to the generalized and specialized
classes, respectively. This corresponds with OMT
[Rumbaugh, 19911 and OOSE [Embley, 19921. The
meaning of direct and indirect gen-spec relations is
explained below.

f i e gen-spec relation gives rise to inheritance, which
is one of the cornerstones of object-oriented analysis and
design. Inheritance means that any feature (attribute or
service) that characterizes the general class also
characterizes all of the specialized classes. The features
are inherited from the ancestor (general) class to the
descendents (specialized classes). Each specialized class
may have its own features in addition to the ones it
inherits from the general, ancestor class. Since
inheritance spans across any number of generations, the
result of the overall structure is a directed acyclic graph.
whose nodes and edges are the classes and the gen-spec

relations, respectively. To remain faithful to the
description in Figure 1, we must distinguish between two
types of gen-spec relations, direct and indirect, as shown
in the legend of Figure 2. The direct gen-spec relation is
the common one and is used when the specialized class
acquires directly all the features of the the general class.
The indirect gen-spec relation is used when only a proper
subset of the classes which are specializations or parts of
the specialized class acquire all the features of the the
general class. Applied to the image classes in IUE, the
OPD in Figure 2 shows, the source of all the image
classes is IUE-object and the destination is
implementation-class. IUE-object inherits its
features directly to generic-class and to data-class.
Interface-class inherits directly from generic-class
and indirectly from data-class. Finally,
implementation-class inherits indirectly from both
data-class and interface-class. These fundamental
relations among the classes are very important to note.
However, deducing them from the OMT class hierarchy
of Figure 1 is not straightforward because of the
multitude of connections among the 32 classes in the
diagram. In the top-level OPD of Figure 2, which has
only five classes, those relations are explicitly expressed
and easily tracked.

Next, we wish to refine the top-level OPD. To this
end, we scale it up. As noted, up-scaling can be done in
three ways: blow-up, unfolding and explosion. We start
by applying blow-up. However, blowing up all the four
high-level classes at once would result in an OPD which
is still too complex, because it would include all 32
classes of Figure 1. Therefore, we blow up only
generic-class. The resulting OPD is shown in Figure
3. The class that was blown up is shown in a gray thick
blow-up frame, with its name in a corner. lnstde the

. I
.

A Data Classes

NE-shamble- 9 ,
ia .p_d. tab~d-bi t ILIE.sin(k_ I

/

1UE.T.S- NE-TS-3D-+* sequence-image

-
, T T 7 ' ~ 1 4 r ' , ;< I l IE~omplex_ IL'E.RGB. I l lETS-

vn.p-ruple image-ruplr im.(r-rqwnrr

I

I
I
I Implementation Classes

Figure I. lhe Object-Modeling Technique (OMT) IUE image clars hierarchy /IUE, 1994~1

blow-up frame are the lower-level classes belonging to
the class that was scaled up. To verify that the upscaling
operation was done correctly, note that if we apply the
inverse operation of blow-up, called shrinking, we get
back the OPD of Figure 2.

Indirect gen-spec4 1
relation

,- 71 generic-class

implemen tation-class

Figure 2. A toplewl OPD ofthe IUE image class hierurchv

Figure 3 is in accord with the "Generic Classes"
poltion of the OMT diagram of Figure 1. generic-
image specializes into four types: stereo-image,
mosaic-image, pyramid-image and generic-
image-collection.

As in OOSE [Embley et al., 19921, the black triangle
denotes the aggregation-particularization (whole-part)
structural relation. Each one of these four image types
consists of a number of generic-images. The number
is denoted by the participation constraint written along the
aggregation link. Thus, the number 2 means that stereo-
image consists of exactly two generic-images, while
I ..m implies a relation of one-to-many between either one
of mosaic-image, pyramid-image and generic-
image-collection and generic-image.

Having understood the generic-imgae specializa-
tions, we can now shrink back the blow-up frame of
generic-imgae and blow up other classes. This time we
blow up data-class and interface-class. The result is
shown in Figure 4, where the seven sharable-image-
data-band specializations which appear stacked on the
left hand side of Figure 1 have been omitted to enhance
readability. Since the parts of data-class and the
specializations of interface-class are now specified, we
can specify exactly the direct gen-spec relations between
the lower-level classes such that the indirect gen-spec link
between data-class and interface-class (denoted by
the dashed line dashed) is no longer needed, and is
replaced by the solid line denoting the direct gen-spec link
between single-band-data and scalar-image. In

Figure 3. An OPD resulting from blowing up generic-
class in the toplevel OPD of Figure 2

Figure 1, single-band-data is linked separately to
both 2D-scalar-image and 3D-scalar-image, but the
latter two are specializations of scalar-image, it is more
correct from a software engineering viewpoint and more
economic in graphic symbols to establish the gen-spec
link at the highest level possible.

As noted, blow-up is one of the three possible up-
scaling operations, the other two being unfolding and
explosion. The difference between blow-up and
unfolding is that while in blow-up the seed (the class that
is scaled up) remains in the background of the plant (the
scaled-up OPD) with the blow-up frame enclosing all the
lower level classes, in unfolding, the seed remains as the
root of the aggregation hierarchy. Explosion is similar to
blow-up, except that rather than having the blow-up
frame with the blown-up class name in the plant, neither
the frame nor the name appear in the plant. Although the
difference among the different types of up-scaling is
graphical rather than semantic, applying various types of
up-scaling to the same system may provide important
insight into the structural relations which can lead to more
economic and concise modeling, as we show below.
Figure 5 shows unfolding of the top-level OPD of Figure
2. It is a combination of figures 3 and 4, where instead of
blow-up we applied unfolding.

, ,

data-class
r I

sharable-
image-databand

I:, I ,
i generic-

I i n I , I I image- 11 a g e I
hanfdata tuple-data sequence-data

class Y

Fi,pure 4. An OPD resuhingfrom blowing up data-clasp
und interface-class in the top-level OPD of F'i~urr 2

Comparing Figure 3 and 4 to Figure 5, we see that
instead of the seed appearing within the blow-up frame in
the plant, each one of the three classes that were unfolded
now appears in the plant as the root of the aggregation
tree. Note that the gen-spec links, which connected the
blow-up frames of data-class and interface-class, now
originate from the corresponding classes themselves,
such that figures 3 and 4 are semantically identical to
Figure 5. Examining the aggregation trees of Figure 5,

data-class

shari~hle-
image-drtahand

1.. m
I

single- image-

mosaic-image

f pyramid-image

I.. m generic-image-collection

complex-image

4
I implementation-class I

Fi~ure 5. An OPD resultingfrom ,rnfo/ding genericclass, data-class and interface-class

we see that the root of each tree has just one outgoing
edge with the whole-part relation: generic-class has
just generic-image as its part, data-class has just
sharable-image-databand, and interface-class has
just simple-image as its part. This suggests that the
insertion of generic-class, data-class and interface-
class may be redundant in the first place. Looking back
at Figure 1, we see that this is indeed the case with these
three classes but not with implementation-class.
Hence, we redesign the toplevel image class hierarchy of
Figure 2 as shown in the OPD of Figure 6. Finally, we
blow-up implementation-class and get the OPD of
Figure 7, where the complete gen-spec lattice, as
specified in Figure 1, is shown.

THE GENERIC-IMAGE CLASS

We continue our analysis by looking into the details of
the object generic-image, which is the root of the
generic class hierarchy. Figure 8 is a detailed portion of
the class hierarchy depicted in the blow-up frame of
generic-class in Figure 3. Each class appears in a box
divided into one, two or three compartments. If only one
compartment exists, then it contains just the class name,
as in generic-image-collection. The thick line under
the generic-image-collection class denotes the fact
that it has neither specific attributes nor specific methods.
If there are two compartments, then the first contains the
class name and the second-the class attributes, as in
mosaic-image, which has the attribute image-set : set-
of-generic-images. If a third compartment exists, it
holds the list of the class methods (services), as in
stereo-image, which has three attributes and three
mcthods.

We have adopted the same font conventions and
C + +like syntax used in [IUE, 1994al: class names are in
boldface roman or times (e.g., generic-image),

attributes are In tlmes italic font followed by a column
followed by an object name (e.g. srero-sensor: sensor-
model), method names are in sans-serif or helvetica font
and preceded by a double semi column followed by the
method input in parentheses, semicolon and the output
(e.g., ::get-window(t h i s : generic-image,
l o c a t i o n : Id-array-of-int, window: value):
value) , and pointers are in typewriter or courier font
followed by a semicolon (e.g., l o c a t i o n :) .

A typical method specification looks as follows:
::pixel-in-bounds (t h i s : simple-image,

l o c a t i o n : Id-array-of-int): boolean
The interpretation of this specification is that ::pixel-

in-bounds is a method of the object class simple-
image, which takes as input Id-array-of-int, which is
a one-dimensional array of integers, denoting the pixel
location, and returns boolean, denoting whether or not
the the pixel is within the image bounds.

Section 4.6 of the IUE Class Definitions [IUE, 1994al
is the image class definitions. Subsection 4.6.1, which
holds 3.5 pages, describes the details of all the generic
classes. The equivalent of these pages (excluding some
documentation) is given in Figure 8, which provides
more details about the structural relations among the
classes than what is given in the IUE Class Definitions
document. The latter specifies only superclasses and
subclasses for each class, i.e., it refers to the gen-spec
relations, but gives no detail about the whole-part
relation, which is specified in Figure 8.

Using the above IUE conventions, all the generic
image class hierarchy with all the attributes and methods
are compactly and concisely recorded in their proper
locations in Figure 8 to reflect superclasses, subclasses,
whole-part relations with the participation constraints.
The class generic-image has no attributes and eight
methods, all of which are inherited to all the four

I

sharahle-image-datahand

6 simple-image EIZl

implementationclass I
Figure 6. A revised roplevel OPD of rhe IUE image

class hierarchy
subclasses.

Attributes in IUE are classified into hard attributes and
soft attributes. Hard attributes are assigned to the class as
it is constructed, while soft attributes are computed
results that are recorded to save unnecessary
computations. Stereo-image has three hard attributes:
left-image and right-image, each of which is a pointer to
generic-image, and Stereo-sensor, which is a sensor-
model. Since generic image is a generalization of
simple-image, stereo-image, pyramid-image,
mosaic-image and generic-image-collection, it is
possible to construct a stereo image each of whose left
and right images are themselves pyramid-images, for
example. This is a very good generalization. However,
there should be a constructor of stereo-image which
will prevent the generation of a stereo-image with left and
right images of different classes or with two stereo
images. No such constructor is listed in the IUE Class
Definition document.

CONSTRUCTORS AND METHODS

Figure 9 shows the generalization hierarchy of
generic-image, simple-image and scalar-image
and the methods associated with each class. The methods
::getlset pixel and ::getlset window of simple-image
are designed to get and set the value of a single pixel or a
window (a rectangular array of pixels), respectively. ld-
array-of-int is a one-dimensional array of integers-a
vector of integers-which is used to store and pass the
location of a pixel or a window or the extents (size) of an
image. Therefore Id-array-of-int has is of length 2
for 2D images and 3 for 3D images.

A scalar-image is an image known to consist of
pixels which are scalars. Therefore, it is possible to
devise for this class specialized methods that make pixel
access more efficient. Hence, it contains methods like
::get-pixel-i and ::get-pixel-f, which are used when the
image is known to consist of integer and float data types,
respectively. The corresponding ::set-pixel methods do
not require the suffix -i or -f, as their input parameter list
already contains the appropriate type. This is also true for
the two ::get-pixel methods that have ref(int) and
ref(float) in their input parameter list.
simple-image and scalar-image are classified as
interface classes. This means that, like generic-image,
they are abstract classes, i.e., they are not instantiable-
no instances can be created for these classes. The
simplest implementation, instantiable class is 2d-scalar-

image. Therefore it is the first one which has constructor
methods-methods used to construct new instances of
the class. Figure 10 is an OPD (object-process diagram)
that depicts the three possible methods by which an
instance of 2d-scalar-image can be constructed.
Constiuction is a process, which is denoted by an ellipse.
The rest are objects, which are denoted by boxes. Arrows
incoming to and outgoing from a process are efect links,
denoting the object(s) required for the process to occur
and the object(s) resulting from the process occurrence.
Solid and dashed lines connecting incoming effect links
denote a logical and and a logical or connector,
respectively. Thus, Figure 10 expresses the fact that the
three constructors: (1) 2d-scalar-image(f ile - name :
iue-string), (2) 2d-scalar-image(x : int, y : int,
datatype : generic-image::IYxel-Type), and (3)
2d-scalar-image (PIS : const pointer (noniue
(IMAGE-STRUCT)) are alternative, and that while
constructors (1) and (3) require one object input each,
constructor (2) requires three object inputs: two objects,
x and y of the class int for the image size and one
object, datatype of the object generic-image
::Pixel-Type. If no logical connector connects
incoming effect links, then the default is logical and: all
input classes must participate in the process (which may
be an abstract process,a method, a constructor, or an
operator).

Figure 11 is an OPD of the complete set of the 39
methods of 2d-scalar-image, enumerated in [IUE,
1994al. The reason Figure 1 1 shows only 14 ovals is that
many methods are represented through inheritance,
thereby reducing the number of methods in the OPD by a
factor of almost 3. The equivalent textual descriptiofs in
I IUE, l994al occupies almost four pages.

Since the OPD describes methods of 2 d - s ~ ~ l i l r -
image, each method has one effect link incoming from
the object this : 2d-scalar-image, which appears at
the top left corner of the OPD. Each methods has in
addition at least one incoming effect link. For example,
the method ::pixel-in-bounds accepts also position,
which, as the legend specifies, is a generalization of
coordinates and locat ion: Id-array-of-int.
coordinates is an aggregation of x: int and y:
int. Neither position nor coordinates appear
in the IUE Class Definitions. Therefore they are not
preceded by a semicolon. Rather, they were added to take
advantage of generalization and aggregation, respective1 y,
for obtaining a high-level view of the set of methods and
reducing the amount of required documentation. Thus,
due to inheritance, the arrow outgoing from position
into the ::pixel-in-bounds oval stands for the following
two ::pixel-in-bounds methods, specified in [IUE,
1 994al:

(1) ::pixel-in-bounds (this : 2d-scalar-image,
locat ion : Id-array-of-int): boolean, and
(2) ::pixel-in-bounds (this : 2d-scalar-image.

x : int, y : int): boolean.
The double-headed arrow is a reflective effect link: the

result of the method is fed back into the object which was
provided as an input. For example, as the OPD of Figure
11 specifies, the assignment operator, ::operator=, gets
the objects this : 2d-scalar-image and im: 2d-
scalar-image, and assigns this : 2d-scalar-image
to im : 2d-scalar-image.

An effect link surrounded by square brackets is
optional. Thus, the OPD specifies two ::get-copy-slice
methods:

(1) ::get-copy-slice (this : 2d-scalar-image,

sequence-data tuple-data hand-data

I

A
I

scalar-image

sharahle-
image-datahand

complex-image I I I

generic-image

complex-

I image I

I I

implementa t ion-c lass

Figure Z Implementation-class blown up, showing the complete gen-spec-lattice for its constituent
classes

Figure 8. The attributes and methods o f generic-image and its specializations

generic-image

::float-pixel* t h i a ,generic-image: Pixel-Type
::int32-pixel* t h i s t generic-image: Pixel-Type
::uint8-pixel* this r generic-imago: Pixel-Type
::int8-pixel* t h i s generic-imago: Pixel-Type
::intl6-p~xel* t h i s t generic-illlnge: Pixel-Type
::uintl6-pixel* t h i s * generic-image: Pixel-Type
::bit-pixels(this r generic-imago: Pixel-Type
::new-image-tom-tiq t h i s r generic-image

name r sirins: pointcr(generic-image)

simple-image A
mosaic-image

image-set : set-of-~eneric-image

I I generic-image-co~~ection

2 - s t e r e i m a g e

&#-image : pointerkeneric-image
righaimage : pointerkeneric-imaR$
stereo-semor : sensor-model
::stero-sensor(t h i s z stero-image: sensor
::left-sensor-coordinate-system

(thiststero-imago: coordinate-system
::right-sensor-coordinate-system

(thisrstero-i~nago: coordinate-system

l . . m

I.. m pyramid-image

image-pymmid : sequence-ofgeneric-image

l . . m

of f x : int, of f y : int, copy- image: 2d-scalar-
image): 2d-scalar-image, and

(2) ::get-copy-slice (t h i s : 2d-scalar-image,
of f x : int, of f y : int, x s t e p : int, y s t e p : int,
c o p y - i m a g e : 2d-scalar-image): 2d-scalar-
image.

As the documentation states, the first method fills data
into copy- image , starting from [o f f x , of f y] ,
while the second does the same, stepping [x s t e p ,
y s t e p l .

The continuation of Chapter 4 of the IUE Class
Definition has the definitions of the classes 3d-scalar-
image, complex-image, and the other implementation
classes, each with over 4 pages of documentation (the
entire Class Definition Document [IUE, 1994al is 338
pages). The vast majority of the methods for these classes
is identical or almost identical to that of 2d-scalar-
image. For example, the two ::get-copy-slice methods
for 3d-scalar-image which are completely analogous to
those of 2d-scalar-image are:

(I) ::get-copy-slice (t h i s : 3d-scalar-image.
o f f x : in t ,o f fy : i n t , o f f z : int ,copy-image:
.Id-scalar-image): 2d-scalar-image, and

(2) ::get-copy-slice (t h i s : 3d-scalar-image,
o f f x : in t ,o f fy : i n t , o f f z : i n t , x s t e p : int,
ys tep . : int, z s t e p : int, c o p y - image: 3d-
scalar-image): 3d-scalar-image.

were copied without alteration (including the wrong
names s t e p x and s t e p y , instead of x s t e p and
y s t ep), from the 2d-scalar-image documentation.
Errors of this type are unfortunately not rare in the
document. Working with object-process diagrams and the
abstractions of d i s p l a c e m e n t and s t e p , it is
possible to avoid both the redundant documentation and
the susceptibility to errors this redundancy is bound to
cause. It is not clear why, at least conceptually, ::get-
copy-slice is not defined at the level of scalar-image,
and inherited with the proper dimension to 2d-scalar-
image and to 3d-scalar-image.

Machine vision systems feature complexity and a
substantial behavioral aspect beside the structural one.
The work suggests that a holistic view of machine vision
systems, which is sometimes set aside, should be
adopted. An object-process analysis (OPA) approach,
which is an extension of object-oriented analysis, has
been suggested as a methodology for analysis,
representation and communication of machine vision
systems. The main benefi t of OPA is presentation of the
structural and behavioral aspects of a system within a
single, coherent frame of reference at any level of detail
without loss of consistency and links among the various
abstraction levels. A small but fundamental subset of the
documentation of the Image Understanding Environment

While it is apparent that these methods are mere (IUE) project was anahzed as a case in point to
extensions of the corresponding methods from 2D to 3D, demonstrate how OPA can be used both to exhibit within
the documentation [IUE, 1994a, p.701 erroneously states one frame of reference the systems structure and behavior
that the first method "fills data into c o p y - image, and to manage the inherent complexity of such systems.
starting from [of f x , o f f y I ," while the second does The analysis is presented in a top-down fashion, showing
the same, "stepping Is t e p x , s t epyl ". The o f f z concurrently objects in the system, how they relate to

each other structurally and how they interact with each and the s t e p z were left out, apparently because they other processes.

generic-image

simple-image

::get-pixel-p(thie : simple-image , locat ion : Id-array-of-int): value (pixel-value)
::get-window(t h i e : simple-image , locat ion : Id-array-of-int, window : value): value
::set-pixel(this : simple-image , locat ion : Id-array-of-int, pixel : pixel-value):pixel-value
::set-window(t h i s : simple-image , loca t ion : Id-array-of-int, window : valrle): value
::get-extents(t h i s : simple-image): value (Id-array-of-int)
::get-extents(t h i s : simple-image, extents : Id-array-of-int): Id-array-of-int
::pixel-in-bounds(t h i s : simple-image , locat ion : Id-array-of-int): boolean

scalar-image

::new-imge(t h i s : scalar-image ,im: const noniue (KBV-Image-Ptr)):
pointer (scalar-image) I' constructor '

::get-pixel-(t h i s : scalar-image , locat ion : Id-array-of-int): int
::get-pixel-{ t h i s : scalar-image , locat ion : I d-array-of-int): float
::get-plxel(this : scalar-image , locat ion : Id-array-of-int, pixel : ref (id)): ref (int)
::get-pixel(this : scalar-image , locat ion : Id-array-of-int, pixel : ref (float)): ref (flaot)
::set-pixef t h i s : scalar-image , locat ion : Id-array-of-int, pixel : int): int
::set-pixer t h i e : scalar-image , locat ion : Id-array-of-int, pixel : float): float
::get-datatyp< t h i s : scalar-image): int
::save-to-KBV-file t h i s : scalar-image , s t r i n g * iue~tring): float

Figure 9. The hierarchy of generic-image, simple-image and scalar-image and their associated
methods

legend

class class-name

effect link &

aggregation
(whole-part)
relat~on

logical and

+
7

logical or

generic-image::
Pixel-Type

iue-string

Figure 10. The three different constructors of 2d-scalar-image

m: d(noniue (ostrem))

f -1 ::operator= im: M-scalar-image 1

Figure 11. The complete set of methods of 2d-scalar-image

The top-down presentation was made possible by the
use of scaling. Scaling is a powerful tool for complexity
management, as it provides for controlling the visibility
and level of detail of objects and processes of interest. As
we proceed down the hierarchy, we get from the high-
level, abstract classes to actual implementation classes. At
this low level, OPA extends the set of symbols to cover
cases, such as reflective and optional effect links, to
abstract and compact the documentation. The resulting
documentation is a set of object-process diagrams that are
about threefold more compact. The set of OPDs provide a
comprehensive, graphic representation of portions of the
system that are at the focus of interest, while keeping the
reader oriented as to where in the system the focus is on.
This way, the 'large picture" is not lost in a myriad of
minute details. The graphic representation potentially
inspires ideas for further abstractions that can be
implemented in code, such as position, coordinate and
step in IUE.

Acknowledgement This research was supported
by the Technion V.P.R. Fund.

REFERENCES

[Chen, 19761 P.P. Chen, The Entity Relationship Model:
Toward a Unifying View of Data. ACM Trans. on Data
Base System$, Vol. 1 No. 1, pp. 9-36, 1976.

[Coad, 19911 P. Coad and E. Yourdon, Object Oriented
Analysis, (2nd Ed.), Prentice Hall, Englewood Cliffs,
NJ, 1991.

[De Marco, 19781 T. De Marco, Strucmred Analysis and
System S p e c i f i ~ ~ o n , Yourdon Press, New York, 1978.

[Dori, 19951 D. Dori, Object-Process Analysis: Maintaining
the Balance Between System Structure and
Behaviour.Journa1 of b g i c and Computanon. 5,2, April
1 995 (to appear).

[Dori et al., 19941 D. Dori, I. Phillips and R.M. Haralick,
Incorporating Documentation and Inspection into
Computer Integrated Manufacturing: an Object-Process
Approach. To appear in Applicanons of Object-Oriented
Technology in Manufacmring, S. Adiga (Ed.), Chapman
& Hall, London, 1994.

[Embley, 19923 D.W. Embley, B.D. Kurtz, and S.N.
Woodfield, Object Oriented System. Analysis, Prentice
Hall, Englewood Cliffs, NJ, 1992.

[IUE, 19941 5. Mundy, T. Binford, T. Boult, T. O'Donnel,
M.C. Chiang, S. Fenster, A. Hanson, R. Beveridge, R.
Haralick, V. Ramesh, C. Kohl, D. Lawton, D. Morgan,
K. Price, T. Start, The Image Understanding
Environment Program-IUE Overview. FTP from
ftp.aai.com (1 92.190.241.40) in directory
/pub/iue/dochnanualr. Version used: April 1994.

[IUE, 1994al J. Mundy, T. Binford, T. Boult, T.
O'Donnel, M.C. Chiang, S. Fenster, A. Hanson, R.
Beveridge, R. Haralick, V. Ramesh, C. Kohl, D.
Lawton, D. Morgan, K. Price, T. Start, The Image
Understanding Environment Program-Class
Definitions. FTPfrom j?p.aai.com (1 92.190.241.40) in
directory /pub/iue/doc/manuals. Version used: April
1994.

[Nerson, 19933 J. M. Nerson, Applying Object Oriented
Analysis and Design, Communicafioru ofthe ACM, 35,
9, pp.63-74, 1993.

[Rumbaugh et al., 19911 J. Rumbaugh, M. Blaha, W.
Premerlani, F. Eddy, W. Lorensen, Object-Oriented
Modeling and Design, Prentice-Hall, Englewood Cliffs,
NJ, 1991.

[Shlaer, 19921 S. Shlaer, and S.J. Mellor, Object
Lifecycles: Modeling the World in States, Yourdon
Press, PTR Prentice Hall, Englewood Cliffs, NJ, 1992.

