MVA'94 |APR Workshop on Machine Vision Applications Dec. 13-15, 1994, Kawasaki

EFFICIENT ALGORITHMS FOR OCTREE MOTION

Andrew SMITH, Yoshifumi KITAMURA , and Fumio KISHINO
ATR Communication Systems Research Laboratories

2-2 Hikaridai, Seika-cho, Soraku-gun, Kyoto, 619-02, Japan
<asmiith, kitamura, kishino>@atr-sw.atr.co.jp

Abstract

This paper presents efficient algorithms for updating mov-
ing octrees. The first algorithm works for octrees under-
going both translation and rotation motion; it works ef-
ficiently by compacting source octrees into a smaller set
of cubes (not necessarily standard octree cubes) as a pre-
computation step, and by using a fast, exact cube/cube
intersection test between source octree cubes and targel
octree cubes. A parallel version of the algorithm is also
described. Finally, the paper presents an efficient algo-
rithm for the more limited case of octree translation only.
Experimental results are given to show the efficiency of
the algorithms in comparison to competing algorithms. In
addition to being fast, the algorithms presented are also
space efficient in that they can produce target octrees in
the linear octree representation.

1 Introduction

Octrees are commonly used in computer graphics
and robot path planning applications as an auxiliary
object representation to speed up spatial access to the
parts of the main object representation. For example,
in collision detection octrees of objects can be searched
to localize quickly interference between objects [1]. In
speeding up the spatial access to the parts of the main
object representation, the octree is immensely helpful.
The problem is that when an object moves the octree
for that object must be updated to reflect the new
location, which is not as straightforward as for other
object representations such as boundary representa-
tions and is in general very computationally intensive.
Not much research has been done on algorithms for
arbitrary octree motion [2, 3].

This paper deals with the problem of efficiently up-
dating moving octrees. The paper starts by consider-
ing the general problem of arbitrary motion of octrees
(i.e., both translation and rotation) and takes as a ba-
sis the arbitrary octree motion algorithm described in
[2]. The paper describes a new, more efficient octree
arbitrary motion algorithm and provides data showin
that the algorithm runs 3 to 4 times faster than [Zr
The new algorithm has two important features which
allow it to run efficiently. The first feature is based on
the fact that the computational cost of octree motion
is proportional to the number of black nodes; thus,
the paper shows how, as precomputation, an octree

172

can be compacted into a smaller list of nonoverlap-
ping cubes (usually about half as many cubes). The
second feature is the use of a fast cube/cube inter-
section test which is specialized for efficient moving
of octrees. A parallel version of the arbitrary motion
algorithm will also be presented and experimental re-
sults will be given to show it's effectiveness. Finally,
the paper considers the more limited problem of octree
translation only and describes a simple method which
can be used to translate octrees most efficiently. It
is important to note that, in addition to being fast,
the algorithms presented in this paper are also space
efficient; this is because they can be used for octrees
represented in the linear octree representation.

2 Octree Shape Representation

2.1 Basic Representation Scheme/Linear

Representation

The octree is a volumetric, hierarchical shape rep-
resentation scheme. The octree represents the shape
of an object by recursively subdividing cubes into 8
smaller cubes (octants), starting from a single large
root cube representing the entire world space. A cube
is labelled black (white) if it is completely contained
within the object (free space); otherwise, the node is
labelled gray. Cubes at the highest level of resolution
(smallest cubes) are called voxels and, since there can
be no gray voxels, are labelled black or white depend-
ing on application specific rules. An example of an
octree is shown in figure 1.

Since an explicit pointer-based octree storage
scheme can be prohibitively expensive in terms of
memory requirements, more compact linear encod-
ings of octrees have been invented. An example of
this is the DF-representation for octrees [4]. Essen-
tially, this scheme stores an octree by listing consec-
utively the octree nodes encountered on performing
a preorder traversal of the octree, where the alpha-
bet used is “(", (gray node?_l, “B” (black node), and
“W” (white nodé. Since there are only three char-
acters in the alphabet, two bits per node are suffi-
cient for storing the octree. As an example, the ex-
ample octree of figure 1 has the DF-representation
b B(‘EWBI.QBWW BWBWB(B(BWBBBWBWBBB

B ”n



IMigure 1: The octree shape representation. (a) The
ordering of octants (b) An example octree (¢) Pointer-
based representation of the example octree.

2.2 Octree Motion Basic Algorithm

The basic algorithm for moving an octree [2] (for
both translation only and arbitrary motion) is to apply
the motion transformation matrix to each black cube
in the octree to he moved (called the source octree)
separately (for a series of motions, the same source
octree is always used and only the motion matrix is
changed; this prevents digitization errors from contin-
ually increasing) and to test recursively, starting from
the largest cube, for intersections between the trans-
formed black cubes and the standard, upright (i.e.,
faces parallel to the standard euclidean coordinate ax-
es) cubes of the new octree to be created (called the
target octree). Standard cubes in the target octree are
labelled white, gray, or black depending on whether
they don’t intersect with a transformed black cube, in-
tersect partially with a transformed black cube, or are
completely inside of a transformed black cube. Target
voxels are labelled black or white depending on appli-
cation specific rules. After a transformed source black
node is tested for intersection with a target octree gray
node, the gray node is tested to see if its 8 children
are all labelled black or all labelled white; if so then
the children are erased and the gray node is labelled
the same as the children were (this is called condens-
ing the octree). This basic algorithm is illustrated in
figure 2 (to simplify the figure, we illustrate the algo-
rithm for the 2D case, called a quadtree; the octree
algorithm works in an analogous way). The following
sections will describe efficient variations of this basic
algorithm.

3 Compaction of Octrees

Note the fact that the computational cost of octree
motion is proportional to the number of black nodes
in the source octree. Also, since motion always starts
from the same source octree much precomputation on
the source octree can be done to speed up the octree

173

L]
> > E[H I i]}ﬂ
L L&
a black node of transformed target octree of
source octree node transformed node

Figure 2: The octree motion basic algorithm illustrat-
ed for the 2D case (quadtree).

motion. In particular, it is not even necessary to store
the octree directly as an octree. Thus an optimization
to the basic algorithm is, as a precomputation step, to
compact the octrees to be moved into the smallest set
of nonoverlapping cubes. The cubes in this compacted
set are not restricted to being the standard cubes of
an octree (e.g., they don’t necessarily have side lengths
which are powers of 2), but they completely cover the
black area of the octree.

Conceptually, the smallest set of nonoverlapping
cubes which completely cover an octree’s black area
can be found by examining all combinations of inte-
ger side length cubes which are inside the root cube.
Practically, however, this is intractable. In this paper,
we merely wish to demonstrate the utility of octree
compaction for octree motion. So for demonstration
purposes we used the following approximate algorith-
m; this algorithm is not guaranteed to find the strictly
smallest set of nonoverlapping cubes but it does gener-
ally find a set that contains about half as many cubes
as there were black cubes in the original source octree.

The algorithm works as follows. First, the bound-
ing box of the octree is found; this is the axis-aligned
parallelpiped inside the root cube which just encloses
all of the black cubes of the octree. Next, all cubes
which have integer side length and which are contained
inside the bounding box at integer-valued vertices are
enumerated in order from larger to smaller cubes (the
ordering of same sized cubes does not matter). The
enumerated cubes are then scanned from larger cubes
to smaller cubes. Each scanned cube is tested for in-
tersection with the white cubes in the octree and the
cubes that don’t intersect any white cubes (i.e., that
are completely inside the black area of the octree) are
put into a new list. This new list is scanned, again
from larger cubes to smaller cubes, and the scanned
cubes which don’t intersect any cubes already in the
output list (this is initialized to contain no cubes) are
added to the output list. After this, the output list
will contain a list of cubes which are nonoverlapping
and which completely cover the black area of the oc-
tree; usually, there will be fewer cubes than there are
black cubes in the octree. Note that this basic algo-
rithm could be easily combined with a random or ge-
netic algorithm component to get better compaction.
For example, an extra step could be added which ran-
domly changed the order of the enumerated cubes and
then ran the algorithm again; this conld be done for



some number of steps and the smallest set found could
be used. For our experiments (see section 6), we scan
the list of enumerated cubes n times, where n is the
number of enumerated cubes, starting from a different
cube for each scan (but still going from larger cubes
to smaller cubes—thus, not all cubes are always s-
canned).

4 Arbitrary Octree Motion
4.1 Problems with Related Work

For arbitrary octree motion, the transformed source
cubes are not necessarily upright and so there is no
simple intersection test. [2? claims that pcrforming
an accurate intersection test between the transforme
source cubes and the target octree standard cubes
is too computationally expensive and that an ap-
proximate intersection test between the circumscribed
spheres of the transformed source cubes and the non-
voxel target octree standard cubes will allow most effi-
cient arbitrary motion of octrees (remember that tar-
get voxels are handled by application specific rules—
thus, the created target octree is not approximate).
There are two problems with this, however. First, [2]
claims to be testing for intersection between the cir-
cumscribed spheres of the transformed source cubes
and the target octree standard cubes. However, the
mathematical test that is actually described to per-
form this intersection test is in fact geometrically an
intersection test between the bounding boxes of the
circumscribed spheres of the transformed source cubes
and the target octree standard cubes; thus, it is dou-
bly approximate. Second, [2] claims that using an ap-
proximate intersection test is the efficient way to move
octrees; however, an important result of this paper is
that using the exact cube/cube intersection test de-
scribed in this paper greatly reduces the total number
of such cube/cube intersection tests (the exact test
eliminates more target cubes from further considera-
tion earlier on) which need to be performed and allows
the algorithm to run approximately 40% faster.

4.2 Exact Source Cube/Target Cube In-
tersection Test

The exact source cube/target cube intersection test
requires the positions (i.e., center point and eight cor-
ner points) of each cube before motion (i.e., their up-
right positions) and both the motion transformation
matrix and the inverse motion transformation matrix.
In the algorithm, any transformations done on the
source cube use the motion transformation matrix and
any transformations done on the target cube use the
inverse transformation matrix. The test will return
one of three possibilities: intersection, no intersection,
or complete intersection (this will be returned if the
target cube is completely inside the source cube). The
test is a series of coarse-to-fine steps as follows:

1. Determine the smaller of the two cubes. If the
two cubes are the same size then the source cube
is considered to be the smaller cube. Also, de-
termine the radius of the circumseribed and in-
scribed spheres of the smaller cube.

174

2. Transform the center point of the smaller cube
and determine if either its circumseribed sphere
or inscribed sphere (these will be centered at the
transformed center point and have radiuses as
calculated in step 1) intersect with the upright
version of the larger cube!. If the circumscribed
sphere does not intersect, then the two cubes def-
initely do not intersect. If the inscribed sphere
does intersect, then the two cubes definitely do
intersect (however, if the smaller cube is the tar-
get cube, then even if intersection is detected con-
tinue to the next step to check for complete inter-
section). Otherwise, continue to the next step.

3. Next, transform the eight corner points of the s-
maller cube and check to see if any of them are
contained within the upright version of the larg-
er cube. If the smaller cube is the target cube
then check to see if all of the eight transformed
points are contained within the upright version of
the larger cube; if so then return complete inter-
section (if not all eight points are inside, but one
or more is inside then return intersection). If not,
Stop and report intersection after finding the first
such corner point inside. Otherwise, continue on
to the next step.

4. Transform the eight corner points of the larger
cube and check to see if any of them are contained
within the upright version of the smaller cube.
Stop and report intersection after finding the first
such corner point inside. Otherwise, continue to
the next step.

5. Now, because we have gotten this far we know
that the two cubes are intersecting if and only if
cach cube has at least one edge Si.e.. one of the
edges of its faces) intersecting a face of the oth-
er cube. Determine the edges of the transformed
version of the smaller cube. Then, test each edge
against every face of the upright version of the
larger cube to see if there is a face for which the
edge is on the outside of the face. If there does
exist such a face, then the edge cannot be inter-
secting with the other cube. If there is no such
face, then the edge might be intersecting the other
cube so store it in a list of edges. If, after checking
all edges, there are no edges in the list then the
two cubes definitely do no intersect. Otherwise,
pass the list of edges onto the next step.

6. For each edge in the list of edges and for each face
plane of the upright cube that it intersected, find
the intersection point of the edge with that plane.
If the intersection point is inside the face of the
upright cube, then there is definitely intersection.
If not then continue with the next face (for the

!"The actual sphere/cube intersection test used is described
on page 335 of [5]; however, we optimize this test by noting that
it does not need to be called twice separately for the circum-
scribed and inscribed spheres—since both have the same center
point the calenlation of dygir, is the same for both and thus only
an extra conditional is needed at the end for the extra sphere.



current edge) or the next edge (from the Iista. If
all such edges and faces are checked without find-
ing any intersection points on a face, then there
is no intersection. This concludes the test.

Note that optimizations to this can be made for ef-
ficient octree motion. For example, the circumseribed
and inseribed radiuses can be precomputed since there
are only a finite number of them. Also, even though
a source or target cube might need to be tested for
intersection with many other cubes, its center point
and eight corner points only need to be transformed
once.

4.3 Arbitrary Motion Efficient Algorithm

The new algorithm works by recursively traversing
(in preorder) the target octree down to the level of
resolution (starting from the root and with all source
black cubes, which are gotten from octree compaction
or by simply listing the original source black cubes)
and testing the traversed target nodes for intersection
(using the exact source cube/target cube intersection
test described in section 4.2) with the source cubes.
A target node is only tested for intersection with the
source cubes found to be intersecting with its parent
node (i.e., the source cubes are passed down recursive-
ly from the root node to the target nodes with which
they intersect). A non-voxel target node determines
its color (black, white, or gray) depending on its in-
tersections with the source cubes passed to it (black
if the cube/cube intersection test returns complete in-
tersection for one or more of the source cubes, white
if the cube/cube intersection test returns no intersec-
tion for all source eubes, and gray if the cube/cube
intersection test returns intersection for one or more
source cubes). However, a non-voxel target node that
initially determines itselfl to be gray in this way waits
for its children to determine their colors before finally
determining its own color; if the children are all white
then the non-voxel target node sets itself to be colored
white and if the children are all black then the non-
voxel target node sets itself to be colored black (this
is condensing the target octree). Target octree vox-
els are tested for intersection with source cubes using
an application specific rule and determine themselves
to be black or white depending on whether this rule
returns intersection or no intersection.

To create the target octree in the DF-representa-
tion, each target node, upon determining its color,
writes the symbol for its color (i.e., (7, “B”, or “W")
to the current location in an array (the current loca-
tion is initialized to be element 1 of the array) and
increments the current location to point to the next
location in the array. However, a gray node, before
incrementing the current location and recursing to its
children, saves the current location; if it later changes
itself to be white or black (due to condensing) it sets
the current location to be the saved current location,
sets the current location in the array to be its new col-
or symbol (“W” or “B”), and increments the current
location. After the target octree has been completely
traversed in this way, the array will contain the DF-
representation of the target octree.

175

4.4 Parallel Algorithm

The algorithm can be fairly easily parallelized, due
to the many independent cube/cube intersection tests
which are involved. Before the parallel algorithm is
run, a precomputation step is run to divide the source
black cubes evenly among the processors. In other
words, if there are N processors then processor i will
receive source black cubes i,i4+ N, i+ 2N ... After the
precomputation step, each processor runs the serial
algorithm on the source black cubes that it was as-
signed and creates a partial target octree. After all
processors create a partial target octree, one of the
processors creates the target octree by performing a
union on all of the partial target octrees.

5 Octree Translation Only

FFor translation only, the transformed source cubes
are axis-aligned. Thus, the test for intersection he-
tween a source and target cube is simply testing the
source cube against the six face planes of the target
cube to see if 1t is completely outside of one of them
(i.e., this is just like checking bounding boxes for in-
tersection). This is the conventional algorithm but,
unfortunately, it doesn’t take into account the fact
that many of the target cubes’ faces share the same
face plane and so there are many redundant tests of
source cubes against the same face planes. The most
efficient way to perform octree translation is thus to
test the source cubes against the face planes only once,
storing the results, and then combining the results to
create the target octree.

In particular, the main idea is to perform binary
space subdivision in each of the x, y, and z dimension-
s separately for each source cube and then combine
these results and add them to the target octree. In
other words, successively divide the one dimensional
space in half, starting from the space which extend-
s from the minimum to maximum extent of the di-
mension, and determine on which side of the division
the source cube lies—the side(s) on which the source
cube lies are further subdivided and this continues to
the level of resolution of the target octree. After the
X, ¥, and z dimensions have been separately subdi-
vided and compared against the source cube (for all
source cubes), these results are combined by travers-
ing the target octree starting from it’s root (and down
to the level of resolution) and determining whether
the source cubes overlap any of the target cubes tra-
versed (using the test described in the previous para-

raph%; however, the determination of which side of a
Face plane a source cube is on does not actually have
to be calculated, but rather can be looked up from the
results of the binary space subdivision. This method
minimizes the number of source cube/face plane com-
parisons that must be done and results in a large
speedup over the conventional approach (see section
6?. To obtain the octree in the DF-representation, the
algorithm for arbitrary motion ‘(described in section
4.3) is used except that instead of using the cube/cube
intersection test the binary space subdivision result-
s are looked up to determine if there is intersection
between source cubes and target cubes.



6 Experiments

We implemented the algorithm and a test envi-
ronment on a Silicon Graphics 4D/340VGX, which is
a shared-memory multiprocessor with four 33 MHZ
MIPS R2000A /R3000 processors. We first did experi-
ments for the arbitrary octree motion algorithms. All
time measurements are for the time taken to create
completely the target octree. As the application spe-
cific rule for target voxels, we determine that a target
voxel intersects a source node if the center point of the
target voxel (inverse transformed) is inside of the up-
right version of the source node; this is the rule that
was used by [2]? and we use it here for direct com-

parison with our algorithm®. As the test, we moved
a space shuttle object (resolution level 5 source oc-
tree with 863 black nodes—458 black cubes after be-
ing compacted with the octree compaction algorithm
described in section 3) with both translation and ro-
tation motion for a number of cycles; at each cycle we
measured the time that it took to create the target
octree. Using this test, we compared the algorithm
of [2] against a version of [2] which uses the exac-
t source cube{ltarget cube intersection test described
above (i.e., other than that the algorithm is the same
as [2]—note that these implementations both repre-
sent octrees using an explicit pointer-based represen-
tation). Then, we compared our proposed efficient ar-
bitrary motion algorithm, with all features (i.c., com-
paction of octrees, use of linear octree representation,
etc.), against [2]. We also implemented the parallel
version of the proposed efficient algorithm and per-
formed the test using 2, 3, and 4 CPUs. Figure 5shows
the space shuttle test object. The results of the exper-
iments for the arbitrary octree motion algorithms can
all be seen in figure 3. Also, at the last cycle (cycle 39)
of the experiment the Weng and Ahuja algorithm per-
formed 54007 cube/cube intersection tests while the
same algorithm with the exact cube/cube intersection
test performed only 43223 such tests; the numbers for
the other cycles were similar.

Finally, we compare the conventional octree trans-
lation algorithm against our proposed efficient trans-
lation algorithm ghoth described in section 5). As the
application specific rule for target voxels here, we de-
termine intersection if any part of a target voxel in-
tersects a source node. As the test, we use the same
test as for the arbitrary motion test without the rota-
tion component (i.e., move the space shuttle with the

?Because of this specific rule, when testing for intersection
between a source cube and a non-voxel target cube it suffices
to test for intersection between the source cube and a shrunken
version of the non-voxel target cube which just contains all the
center points of the voxels in the non-voxel target cube, This
is a cube which has the same center point as the non-voxel
target cube but whose side length is one less. This rule specific
optimization is used in [2] and we also use it, but it is not
generally applicable.

3Note, however, thal to insure correctness in collision detec-
tion and robot path planning the rule must be to label a target
voxel black il any part of it inlersects with any transformed
source node—our algorithm can easily and efficiently adapt to
this rule whereas [2] cannot.

176

same translation component). Once again, at each
cycle we measured the time that it took to create the
target octree. Note that we tested the proposed effi-
cient translation algorithm both with and without oc-
tree compaction; the result from without compaction
shows that the proposed method truly is efficient (and
not due to just the compaction). The results of the
experiments for octree translation algorithms can be
seen in figure 4.

P time (milliseconds)
m___
. | Weng & Abuja
m -
m_ — =
y 8
£ T inter soction
tost
500
‘w _ —
300
0

0 10 20
t(cycles)

I'igure 3: Results from the tests done for the arbitrary
motion algorithms.

7 Discussion

As can be seen from the figures, the arbitrary mo-
tion algorithm is quite efficient in comparison to the
algorithm of [2]. Figure 3 shows that, as we stated
previously, the algorithm of [2] works approximately
40% faster when it uses the exact cube/cube intersec-
tion test. Even better, our new algorithm runs nearly
4 times faster than [2]. In addition, the parallel algo-
rithm achieved reasonable speedups. The parallel al-
gorithm (with four processors) achieves about an eight
times speedup over the algorithm of [2]. In addition,
the optimized translation algorithm performs about 3
times better than the basic algorithm; note also that
the translation algorithm is much faster than the arbi-
trary motion algorithm (for the same object and same
translation, but without the rotation)—thus, if motion
is only translation then big performance gains can be
had by using the translation only algorithm instead of
the arbitrary motion algorithm.

‘53] also describes an algorithm for updating octrees
undergoing arbitrary motion; it works similar to [2],
except that it avoids condensing octrees by comparing
traversed target nodes for intersection with both the



computation time (milliseconds)

Conventional
350 4 - L iranslation algorithm
300 + b
|
250 — 1
Proposed transiation
algotithm (without
200 1 1~ ocires compaction)
150 4 +
Proposed iransiation
1 algorithm (with
100 t + oclres compaciion)
50
|
0 1

30 40

20
t (cycles)

I'igure 4: Results from the tests done for the transla-
tion motion only algorithms.

black and white nodes of the source octree (ie., if a
target node intersects only black source nodes or only
white source nodes then the node is known definitely
to be black or white —no condensing is necessary). We
did not implement this algorithm in order to compare
it to ours. This is because, even allowing for speedups
due to faster computer hardware, our algorithm per-
forms better for similar sized octrees (i.e., compared
to the performance figures given in [3], our algorithm
performs more than 115 times better, and just better
hardware most likely cannot make up for this).

A final important characteristic of the new arbi-
trary motion algorithm is that it can optimize geomet-
ric search using octrees. In other words, in many ap-
plications the octree serves merely as an auxiliary ob-
Ject representation to some main representation which
is actually visualized (e.g., boundary representation,
constructive solid geometry). In this case the octree is
used to speed up spatial access to the parts of the main
representation. In this kind of an application, it is not
always necessary to update completely (i.e.. to voxel
level) the octree for an object, but rather only un-
til the necessary spatial access operation is complete.
For example, in collision detection using octrees, if a
non-voxel target node is found to be intersecting on-
ly source black cubes from one object then it is not
necessary to check the child nodes of that target node
(because there can be no collisions anywhere within
that target node—only one object’s source black cubes
are contained within it). The new arbitrary motion of
this paper can easily handle this situation, whereas
[2] cannot because it must traverse the target octree
many times for each source black cube separately.

177

8 Conclusion

In this paper, we have presented efficient algorithm-
s for updating octrees undergoing both arbitrary mo-
tion and translation only motion. The arbitrary mo-
tion algorithm achieves efficiency by using a fast, exact
cube/cube intersection test and by compaction of oc-
trees as a precomputation step. An efficient parallel
version of the arbitrary motion algorithm was also p-
resented. For translation only, efficiency is achieved
by testing source black cubes against face planes in
the target octree only once and then combining the
results to create the target octree. Both the arbitrary
motion algorithm and the translation only algorithm
can be used for octrees represented in the linear DI-
representation.

[igure 5: The space shuttle experimental object

References

[1] Kitamura, Y., Takemura, H., Ahuja, N., and K-
ishino, I'. Efficient collision detection among ob-
Jects in arbitrary motion using multiple shape rep-
resentations. In 12th International Conference on
Pattern Recognition Jerusalem, Israel, 1994.

[2

Weng, Juyang and Ahuja, Narendra. Octrees of
objects in arbitrary motion: Representation and
efficiency. Computer Viston, Graphics, and Image
Pracessing, Vol. 39, No. 2, pp. 167-185, 1987.

3

—_—

Hong, T.H. and Oshmeier, M. Rotation and trans-
lation of objects represented by octree. In Inter-
national Conference on Kobotics and Automation,

pp- 947-952. IEEE, 1987.
[4

Mantyla, Martti. An introduction to solid model-
tng. Computer science express, 1988,

[5] Glassner, Andrew S_, editor. Graphics Gems. A-
cademic Press Professional, 1990.





