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ABSTRACT 
This paper describes a method for fitting 3D 

object model to still (single) 2D observed image by 
searching for the model's optimum posture parameters 
in the parameter space through LMM iteration method 
(a stabilized Gauss-Newton method). In the method, 
we propose a new approach to feeding an excellent 
initial parameter value to the iteration method via 
aspect identification by applying linear combination 
method of 2D aspect imaged[l], and via restricting 
the feature correspondence between the 2D image and 
the model's projection image to their circumferential 
features. Due to these schemes, the method gives a 
simple, fast and robust procedure. Numerical simula- 
tion using 500 randomly postured synthetic images of 
an irregular pentagonal prism shows 100% correct 
match only in 2.98 average iteration counts of the 
LMM method. 

1. Introduction 

It is one of the central tasks in 3D model based 
computer vision to find out posture parameters 
(rotational angles and translational position) of an 
object by fitting 3D object model's projection image 
(3D image) to bserved 2D gray scale image (2D 
image). The fitting problem has been studied mainly 
in two different basic strategies; qualitative or 
topological fitting [2],[3] and quantitative or spatial 
fitting [4],[5]. Compared to the former, it is reported 
that the latter yields smaller number of multiple 
solutions (typically unique solution if the object has 
no symmetry) and tends to be robuster in the case 
where occlusion and noise exist in the observations. 
The spatial fitting is commonly formulated in a 
nonlinear minimization problem, and an iterative 
method such as Gauss-Newton (GN) method is fre- 
quently employed on searching for the optimum pa- 
rameters in the parameter space. 

Lowe [4] employed GN method in spatial model 
fitting problem successfully. Due to the existence of 
multiple local minima of error evaluating function, 

his method has to run GN iteration many times using 
different starting (initial) parameters. Even after 
many runs which consume a long time, it is possible 
that global minimum can not be found. Little is 
described how to choose initial parameters. 

This method is extended to image frame sequence 
for motion tracking [S]. Levenberg-Marquardt (LM) 
method supersedes GN method with a few more 
improvements. The result of the previous frame can 
successfully be adopted as initial parameters for 
intermediate frames, but there is no improvement for 
estimating initial parameters of the starting frame. 

One of main problems of the above and other con- 
ventional 3D model fitting methods seems to be 
absence of or difficulties in finding for such a good 
initial parameter value estimation that leads the itera- 
tion procedure to the global minimtm. This is a con- 
sequence of unknown feature correspondence be- 
tween 2D images and the model, and of a large num- 
ber of the possible correspondences. 

This paper proposes a new method of quantita- 
tively determining posture parameters of an object - - 
from its single 2D image. The method gives an 
estimation scheme of good initial parameters by 
analyzing aspect of the 2D image and by making 
correspondence between only circumferential features 
of the 2D image with those of the 3D image. We 
introduce linear combination method of 2D images by 
Ullman and Basri [ I ]  for aspect identification. In 
order to stabilize the solution, to achieve faster 
converging speed and to make the method robust to 
noisy and defective 2D image, we employ Levenberg- 
Marquardt-Morrison (LMM) iteration method with 
two kinds of error measure between the two images; 
one is sum of squared vertex Euclidean distances and 
the other is sum of squared edge distances. 

In section 2, the initial parameter estimation 
scheme is described with the 2D image linear combi- 
nation method and a rule for making correspondence 
between features of the two images. The LMM 
iteration method and two kinds of error measure are 
explained in section 3. Results of a numerical 
simulation are shown in section 4. 



2. Initial parameter estimation 
In all iterative methods, it is essentially important 

to estimate such initial parameter values that can most 
probably converge to the global minimum. Observed 
aspect of the 2D image must be an effective cue for 
the estimation, and a representative view of the aspect 
must give an excellent initial parameter for our 
iteration method. 

2.1 Linear combination method of 2D image 
Ullman and Basri have reported linear combination 

method of 2D aspect images which are obtained by 
orthographic projection [I]. On the basis of their 
method, it is possible to identify the aspect of the 
observed image using multiplications of aspect iden- 
tifier matrices with its feature vectors. 

Let x be n dimensional x-coordinate vectors of n 
feature points of an observed 2D image. This is repre- 
sented as a linear combination of x-coordinate vectors 
of 2D bases images' features xi (i = 1,2,3) whose ele- 
ments are arranged in the same order as x (the arrang- 
ing method will be described later) and translation 
basis vector x4 = [I;.-,llT. Here, indicates a trans- 
pose. Using the same notations, this holds also for y- 
coordinates. 
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Adopting these bases vectors, it is possible to 
construct nxn aspect identifier matrices Lx (for x- 
coordinates) and LyQ-coordinates) of the aspect. 
Suppose that Lx satisfies next equation. 

where, choosing vectors xi (i = 5;-,n) by Schmidt's 
method so that they are orthogonal to {xi I i =I;-,4} 
and also to each other, and using an arbitrary vector XO, 
x = [X~J'~J~,X~,XS,"',XFI], xo = [xo,XO,XO,XO,XS,'.',X~]. 

Then, Lxmaps aribitrary x of Eq(1) to Zi ai xo , a 
vector proportional to xo. For the purpose of aspect 
identification, it is convenient to put xo = 0. The same 
is true also for y-coordinates. Thus, after preparing Lx 
= XOX and Ly  = YO Y for each possible aspect, it 
is easy to check which aspect is observed in the image 
by evaluating A = IKxxJI+IKyyJJ r 0. Because xo = 0, 
we pick up two aspect candidates for the 2D image 
which show the smallest values of A. 

Using aspect analysis method by Ikeuchi and 
Kanade [6], we obtain total number of aspects and 
their representative views as those observed from 
centers of gravity of the aspect regions on Gaussian 
sphere. Three bases images of each aspect are se- 
lected from the aspect region so that they are as much 
linear independent as possible, and corresponding 
aspect identifier matrices Lx and Ly  are calculated. 

2.2 Aspect and initial parameter 
Because of Gaussian sphere, the representative 

view of each aspect gives the initial values of rotation 
angles OX and Oy about x and y axes on the image 
plane. On the other hand, rotation of the object about 
z (lens) axis gives no aspect change. Thus, initial 
value of OZ is related to feature point correspondence 
between 2D and 3D images within the aspect. In or- 
der to drastically simplify this problem at the initial 
step of iteration, we restrict the correspondence be- 
tween features to circumferential ones of the 2D and 
3D images. In actual image acquisition, it is reason- 
able to believe that circumferential features are more 
reliable than interior ones. If we have n such features, 
there are n correspondences between 2D and 3D 
images depending upon from which feature we start to 
pick up. This gives an initial estimate of 02. 

Initial values of scaling and (x, y) translations of 
the object are estimated by variance and mean of the 
2D object image area. Total parameters number is 6. 

3. Error measures and LMM iteration 

In order to get faster and stable convergence of 
LMM method, we employ two kinds of error meas- 
ures between the two images ; (a)differences of x and 
y coordinates of circumferential vertices between the 
two images, and @) longitudinal and transversal 
distances to a line segment of 3D image measured 
from a few points on each line segment of 2D image 
(see Fig.1). The feature correspondence for (a) is 
explained in section 2. For (b), the closest segments 
of the smallest error measure are paired with. The 
latter seems to be an ad hoc correspondence, but this 
works properly because @) is employed after (a). The 
error measure @) can accelerate convergence and can 
account also to interior structure of the object. The 
LMM method searches for the MMSE fitting of these 
error measures. 

The LMM iterative process is expressed by Eqs. 
(4), (9, with the initial parameter given in section 2, 
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Figure 1. Two error measures between line 
segments of 2D image and 3D image. 



where pk, dk, ek and Jk represent 6-dimensional pa- 
rameter vector, correction vector, m-dimensional error 
measure vector, and mx6 Jacobian whose (ij)-th ele- 
ment is [aeSilapSj], respectively at k-th iteration step. 
Identity matrix (6x6) I with adjustable positive scalar 
hk stabilizes the convergence. 

where dk is the MS solution of Eq.(5). 

Because imaging of orthogonal projection is 
obtained by product of translational and rotational 
matrices, calculation of partial derivative with respect 
to each parameter reduces to modification of each 
matrix. Therefore, calculations of Jk for our error 
measures are simple. 

Using the error measure (a), the procedure is iter- 
ated until the condition Ilek+, - ek 1 1  / m c is satis- 
fied. Then, we switch the error measure to @), and 
repeat until llekll / m c is satisfied. If both con- 
vergence conditions were not satisfied within pre- 
determined iteration counts, the second aspect 
candidate is adopted. 

4. Numerical simulation 
We employ an irregular pentagonal prism who has 

21 aspects in this simulation. Five hundreds of 2D 
observation images are synthesized by generating 
posture parameters of uniform random variable. 
Small observation noise (0.3% of the object size) is 
introduced in synthesizing all 2D images. 

Fig. 2 shows an example of false converging proc- 
ess of the 3D model image (dotted lines) to the 2D 
image (real lines with circle points on the edges) when 
the process startes from a view of different aspect 
using error measure (a). After 6 iterations the proce- 
dure converges to a local minima. Aspect of the final 
image has changed from the starting aspect. Though 

the procedure can traverse aspect borders, the true as- 
pect is too far from the starting aspect to be reached. 
This example shows significance of the initial parame- 
ter and that its aspect should neighbor the true one. 

Fig. 3 shows an example of successful fitting 
which starts from the same aspect's representative 
view. Measured error values are written in each win- 
dows. In this case, it took only two iterations using 
error measure (a) exclusively. The convergence con- 
dition for error measure (b) is also satisfied finally. 

Next example depicted in Fig. 4 is the case where 
2D observed image is very close to aspect changeover. 
In such cases, aspect identification, feature correspon- 
dence, error measurement and consequently conver- 
gence are all difficult. After 3 iteration (vl-v3) with 
error measure (a) and an iteration (el) with error 
measure @), error decreasing rate becomes very slow, 
and there still remains small amount of error. The 
iteration process will not converge any more. Be- 
cause of the small noise introduced in 2D observation 
image, there is mistake in aspect identification. Thus 
the second aspect candidate is adopted, and after the 
same iteration count as the first aspect, the 3D model 
image fits correctly. 
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Figure 3. An example of correct fitting after 2 itera- 
tions started from the identical aspect. 
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Figure 4. The case where the observed object has 
posture very close to aspect changeover. 



All the 500 2D synthesized images have had 100% 
correct fitting, among which 490 have succeeded with 
the first aspect candidate and error measure (a), 6 with 
the first candidate and error @), and 4 with the second 
one and error (b). The histogram of total iteration 
counts is depicted in Fig. 5. Note that thick bars at 
every 5 iteration count are grid of the graph. The 
minimum, maximum, mean and standard deviation of 
all 500 iteration counts are 1, 42, 2.98 and 3.34, 
respectively. For the cases where correct fitting is 
obtained by the first aspect candidate and the second 
candedate, the average values of aspect identification 
measure A = IJLxxJJ+JJLyyJJ of observed 2D images are 
2.8e-5 (to the first candidate), and 4.5e-4 (to the first 
one) and 2.8 (to the second one), respectively. 

The above results show the importance of aspect 
information for the initial posture parameter. If the 
iteration starts from a far different aspect, it will 
surely converge to a local minimum. When a wrong 
initial parameter is applied for an image sequence, it 
is possible that the method can trace the whole 
sequence in failure. 

On the other hand, initial parameter of identical 
aspect view can very quickly lead the iteration to the 
global minimum. Circumferential correspondence of 
features and two kinds of error measure simplify the 
method and accelerate the convergence speed. 

Difficulty is the 2D image positioned very close to 
aspect changeover. It needs larger iteration counts 
and the second aspect candidate. However, it is 
shown that the second aspect candidate can give very 
effective initial parameter estimation. 

The most time consuming parts of the method are 
the aspect identification and the calculation of 
Jacobian. But, current micro computers can calculate 
and wireframe graphic display of our method in real 
time. 

5. Conclusions 
A quantitative method for fitting 3D object model 

image to single observed 2D image is discussed, and 
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a new method for initial parameter estimation for the 
2D image is proposed. The initial parameter 
estimated by aspect identification and two kinds of 
error measure make LMM iteration very fast and 
robust. It is pointed out that when the observed image 
is close to aspect changeover, the problem becomes 
very difficult. However, the second aspect candidate 
gives a very good estimation for such difficult cases. 

Although a small amount of noise is included in 
our simulation data, we need to check the 
performance of the method to much stronger noise 
and occlusion. Real images are also necessary for the 
checking. The method should be extended to objects 
with self-occluding contours. 
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Figure 5. The histogram of 500 iteration counts. 




