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A B S T R A C T  

In this paper, we propose a B-spline based approach to  
the shape from shading problem. Its basis lies in approxi- 
mating a smooth surface by uniform bicubic B-spline baais 
functions. Since the surface normal in a patch is uniquely 
determined by heights of its sixteen neighbour vertices, the 
image brightness is directly related to  the control vertices. 
The control vertices are then determined by minimising 
a cost functional corresponding to  the squared brightness 
error, optimised by conjugate gradient method. The pro- 
posed algorithm does not require any integrability con- 
straint or knowledge of boundary conditions. Using two 
experiments with synthetic images, we demonstrate the 
performance of the algorithm. 

1. I N T R O D U C T I O N  

The problem of shape from shading is that  of recovering 
the 3-D surface shape from a single 2-D shaded image data 
based on the reflectance map and in some cases, the bound- 
ary orientation. Much of the early research into shape 
from shading, formulated and pioneered by Horn [I], [2], 
was aimed at  obtaining the surface orientation. The vari- 
ational approach [I], [3], [4], 151, in which a surface (z) ori- 
entation field is characterised by its slopes p(z, y) = a z l a z  
and q(z, y) = a z l a y  has been used to determine the ori- 
entation. 

The variational approach results in a set of first-order 
partial differential equations. The difficulty in solving 
these equations are two-fold. Firstly, appropriate bound- 
ary conditions are required and secondly, the nonlinear 
equations are solved by iterative algorithms whose con- 
vergence properties are not well understood [2], [4]. The 
algorithm suffers due to  the non-integrability of computed 
p(z,  y) and q(z, y) and the ill-posednesa of the problem [3]. 
A different approach in which the height of the surface was 
extracted from the image was proposed by Pentland [6]. 
He related the height to image brightness in closed form, 
with a linearised reflectance map in the Fourier Transform 
domain. 

We propose a new B-spline based approach to shape 
from shading in this paper. It stems from the idea of 
approximating an order-2 continuous surface by a linear 
combination of a set of uniform bicubic B-spline basis func- 
tions. Since the surface normal is determined by its six- 
teen neighbour control vertices, we can relate the image 
brightness directly to the height of the control vertices via 
the reflectance map. A cost function is defined in terms 
of the squared brightness error and a regularisation term 
that minimisea the bending energy [7], to  make the problem 
well-posed. 

Our approach is similar to that  of Lee and Kuo [El, but 
major differences exist. Firstly, they use triangular surface 
patches as basis functions which are not C1 continuous and 
hence computing the derivatives are difficult. This forces 
them to use linearised reflectance map in relating image 

brightness to  nodal heights. In our case, since bicubic B- 
splines are C' continuous, the exact relationship between 
the height, brightness and the reflectance map can be es- 
tablished, which is the second difference. Finally, we use 
conjugate gradient optimisation which is computationally 
demanding than the multigrid technique used by Lee and 
Kuo [8]. The computational complexity is justified on the 
grounds of seeking the true optimum set of parameters for 
shape reconstruction. Note that Bolle and Cooper [9] use 
global quadratic polynomials as basis functions to repre- 
sent, not the shape, but the image itself and then trans- 
form the estimated coefficients or parameters for compar- 
ison with those of known shapes. 

2. I M A G E  I R R A D I A N C E  E Q U A T I O N  A N D  
I M A G E  F O R M A T I O N  

We assume that  the shaded image is formed by an ortho- 
graphic projection of a Lambertian surface with a distant 
single point light source, as in [lo]. The surface shape is de- 
scribed in the cartesian coordinates (2, y, z )  and expressed 
by the equation z = z(z ,  y). With the viewing direction 
aligned with the negative z-axis, under the orthographic 
projection of the surface, the shaded image coordinates 
are also (z ,  y). The surface orientation is specified in the 
gradient space (p, q), where the surface normal is [ p ,  q, -11, 
given by, 

Image formation can be described by a single equation 
called the image irradiance equation [lo], where image 
brightness is related to surface orientation through the re- 
flectance map. The reflectance map . With gradient space 
used to represent surface orientation, the image irradiance 
equation is given by, 

where I ( z ,  y) is the brightness at  a given point (2, y) and 
R(p, q) is the reflectance map which provides information 
on the reflection property of the surface and of the light 
sources. Under the assumption of orthographic projection 
(Lambertian surface and distant single point light source), 
the form of the reflectance map is usually given M, 

where r) is the albedo of the surface, (p, q, -1) is the gradi- 
ent of the surface at  (2,  y), ( p , ,  q,, -1) is the illumination 
direction and, 

k ,  = -r*=. = sin r sin u 

kq = = con r sin u 
1 t p : t q  

kr = = cos u 
1 t p : t q :  



with T ,  a being the tilt and slant angles made by illumi- 
nation direction with the z-axis and z-axis respectively. 

Horn et al., [I], [2] estimated the surface orientation 
n = (p, q) at  each image point directly, the underlying 
theme being the satisfaction of the image irradiance equa- 
tion I ( z ,  y) - R(p, q) = 0 (2) or at  least the minimisation 
of the difference over the image domain fl. 

This is an ill-posed problem which is made well-posed by 
including regularisation terms [l l] .  

We adopt an alternative, but similar, approach where 
the shape of the surface is described in terms of a set of 
parameters, say a (ie., z = z(z ,  y; a)), then the optimal 
set of parameters a. are obtained by minimising a coat 
function as in (5) including a regularisation term in which 
the parameter a appears through the p, q terms in the 
reflectance map R(p, q) given by (3). In the next section, 
we look at  a particular surface shape description and the 
set of parameters that  need to be optimised. 

3. SURFACE DESCRIPTION WITH 
B-SPLINES 

A general surface can be described as a linear combination 
of a set of basis functions B;,, as, 

where v;#j are the coefficients known as control vertices. 
To describe a 2-D surface, the control vertices are placed 

on a topologically rectangular array ( i ,  j ) ,  called control 
mesh or control graph, over the image plane as shown in 
Figure 1. 

Figure 1: Control vertices, Image pixels for the ( i ,  j) 
Square Patch. 

For a given image of 2(N - 3) x 2(N - 3), the number 
of control vertices are N x N. The surface being recovered 
from the shading image is formed by scaling the sum of 
basis functions over the image domain fl. The scale factors 
are control vertices. 

The two dimensional basis functions are formed from 
the one dimensional uniform bicubic B-splines as tensor- 
product B-spline [12], given by, 

The basis B(z)  is non-zero over only four successive inter- 
vals which consists, from right to left, four basis segments 

b,(z)l b'(z) ,bl(z), bo(z) [12], given by, 

They combine to  form a piecewise cubic polynomial curve 
which has positional, first and second derivative continuity 
(CZ continuity) at  the joints between successive segments. 
The 2-D basis function B;,,(z, y )  is shown in Figure 2 and 
is non-zero over a 4 x 4 region In the image plane. 

Figure 2: The non-zero portion of a single uniform bicu- 
bic B-spline Bo,o(z, y), formed by, uniform cubic B-splines 
Bo(z), Bo(y). 

Using the bicubic B-spline basis functions, any C' sur- 
face can be described by, 

where z ,  y E [O,l]. The height at  position (z,  y) inside the 
square patch is uniquely determined by its sixteen neigh- 
b o w  control vertices & = [vi,y, Vi,j+l,. . . , V i + ~ , ~ + 5 ] ~ ,  
shown in Figure 1. 

It is straight forward to see that  the partial derivatives of 
the surface with respect to (w.r.t) z and y at  any point in- 
side this square patch is also affected by its sixteen control 
vertices as follows: 

where c.(z, Y), c,(z, y) are (16 x 1) vectors which depend 
only on the image point (z ,  y). Note that c.(z, y) is given 
by, 

c.(z, y) = [CLY(O, O), . . . , CLV(r, S), . . . ,c:y3, 3)lT (11) 

and 

The terms c,(z, y) can be similarly expressed. For a given 
image point (2, y) inside the ( i ,  j )  square patch, the surface 
orientation pij(z, y) and qij(z, y) are scaled combination of 
sixteen neighbour vertices. The second order derivatives of 
the surface are readily found from differentiating equation 
(10) and are used in obtaining the regularisation term. 

The B-spline representation of the surface can be viewed 
as a parametrised representation with the control vertices 
representing the met of unknown parameters for the given 



shape. In the next section, we will formulate the B-spline 
based algorithm as an optimisation task in which the opti- 
mal set of control vertices that  satisfy the irradiance equa- 
tion is sought. 

4. THE B - S P L I N E  B A S E D  A L G O R I T H M  

The given image of 2(N - 3) x 2(N - 3) has pixel bright- 
ness values Imn and the corresponding reflectance map 
R(pmnl qmn) given by (3) where, 

Pmn = ~ i j ( z ,  Y) Qmn = 9 i j ( ~ ,  Y) (13) 

and (m,  n )  is a pixel inside the (i, j )  square patch as shown 
in Figure 1. Inside the square patches formed by four con- 
trol vertices, there are four image pixels. Their positions 
inside the square are given by (I, y) = (0.25,0.25), (I, y) = 
(0.25,O. 75), (2, y) = (0.75,0.25), (2, y) = (0.75,0.75). 
Hence, the surface orientation of these four positions are, 

where c y  = c,(0.25,0.25), c:' = c,(0.25,0.75), c iO = 
c,(0.75,0.25), cil = c,(0.75,0.75), as given in (11). Simi- 
lar expressions for pi1 can be given. The numerical values 
for the vectors c, can be pre-computed. 

Using the image irradiance equation (2), we can now 
relate the brightness values at  each pixel Imn with the 
height of the control vertices vij appearing through sub- 
stitution for R p, q) using (3) and (10) with pmn, qmn for 
m , n = o  , . . . ,  Z[N-3). 

The optimal set of control vertices are those that min- 
imise the brightness error and the problem is posed as an 
optimisation task where, the cost function, 

m ,n r0  

(15) 
is minimised. However, this is an ill-posed problem and 
we need to  add a regularisation term in order to make the 
problem well-posed [ l l ] .  

The  regularisation term added to  the brightness error 
cost term is the bending energy evaluated over the entire 
image plane 0 [7], given by, 

(16) 
Since the surface is formed by patches of uniform bicublc 
splines with C2 continuity, (16) can be easily integrated 
over the image plane. Solving for this gives the regularisa- 
tion term as, 

N 

where H is a matrix dependent on the basis functions and 
can be pre-computed. 

The optimal set of control verticea v;j for i ,  j = 1,. . . , N 
are estimated by minimising the total cost function E,  

where X > 0 is the regularisation parameter which provides 
a trade-off between smoothing and satisfying irradiance 
equation. 

The regulariser X is chosen to  have some initial value 
which is reduced gradually to  near zero values, as in [4], 
[5], [a]. The minimisation of (18) is carried out using the 
conjugate gradient descent method. Since changing X will 
change the conjugate direction, X is changed after every 

ten conjugate iterations and the negative gradient is then 
used as the optimum search direction following the change. 

Applying conjugate gradient method to  the cost function 
E,  the control vertices are iterated using, 

where y is the optimum step length and AV in the conju- 
gate search direction, which is a linear combination of the 
negative gradient and the last step search direction, given 
by, 

A K + l =  A& - V E V  (20) 

where V E V  is the gradient of the cost function with re- 
spect to  the control vertices vij. A control vertex affects 
only its sixteen neighbour square patches. With four pixels 
in each square patch, there are 64 nonzero elements in the 
summation required in the term Eo for each control ver- 
tex. On the boundaries and corners, there are less nonzero 
terms in the summation. 

The optimum step length y is found by solving a non- 
linear equation. Since the surface orientation pmn, qmn are 
linear functions of the control vertices V, 

Substituting these in equation (15) gives a function depen- 
dent on the single variable y, 

with the coefficients independent of y. The optimum y is 
found using Newton-Raphson method to solve the equation 

The B-spline based algorithm is as follows: 

1. In i t ia l i sa t ion:  Set all control vertices to zero ( i e . ,  set 
all p, q to 0). Then calculate gradient of the cost func- 
tion w.r.t control vertices. Let the negative gradient 
be the conjugate direction. 

2. I t e r a t i ons :  

(a) Calculate the optimum step length in the conju- 
gate direction. 

(b) Update control vertices using the step length and 
direction. 

(c) Calculate new conjugate direction. 
(d) If cost function is below a threshold then stop, else 

go to  (a). 

5. E X P E R I M E N T A L  R E S U L T S  

The first experiment involves a shape in which the surface 
changes only in one direction, the underlying shape being 
described by z(x, y) = sin(0.42). The shaded image is 
synthesised with the light source at  a tilt angle of u = 
15" and a slant angle of T = 10". Figure 3 shows the 
shaded image, original shape of the surface, the recovered 
shape and the cost function decrease against number of 
observations. The reconstructed and the original shapes 
are shown in the same scale. 

In the second experiment, a more complex shape give by 
z(2 ,y)  = sin(0.01z2 + 0.01y2), is used. Once again, the 
shaded image is generated with u = 15" and T = 10". The 
results are shown in Figure 4. 

The recovered shape in both experiments contain the es- 
sential features in the original shape of the surface. The 



Figure 3: Expt 1: (a) Shaded image 
image (c) Cost function Vs iteration 

Figure 4: Expt 2: (a) Shaded image 
image (c) Cost function Vs iteration 

shape near the edges exhibit aberrations and error in the 
height of the surface is also present. Much of the shape 
near the centre show good accuracy. The results for the 
second experiment, where a much wider bandwidth of the 
surface shape is used, show the errors also appearing in 
regions where the information in the original image is com- 
pressed. The essential features of the shape however, were 
recovered. 

The results demonstrate that  the B-spline based algo- 
rithm achieved a good degree of approximation, given that  
no information other than the shaded image and the di- 
rection of light source was used. It should be borne in 
mind that  the problem of recovering the shape is an ill- 
posed problem, more so without additional constraints. 
The shape degradation near boundaries are due to  the 
scarcity of information leading to  unreliable estimates of 
control vertices. This accuracy can be significantly in- 
creased if additional constraints or information, such as 
surface orientation near the boundaries, are used. 

The application of the B-spline based algorithm is not 
without its limitations. The use of piece-wise continuous 
surface patches to  represent the shape assumes that the ob- 
ject being recovered is smooth and devoid of sharp edges. 
Furthermore, the control vertices are placed on a regular 
grid and would therefore require the region of the image 
in which the object lies to be rectangular. Hence, the al- 

gorithm is not suitable for the application of object iden- 
tification in a real scene. I t  is more suited to recovering 
the shape of terrains as required in tasks involving vehicle 
navigation and aerial photograph reconstruction. 

6.  CONCLUSIONS 
We have a presented a new and efficient algorithm for the 
shape from shading problem. This algorithm differs from 
the traditional variational approach and adopts the nur- 
face interpolation idea by using B-splines to represent the 
shape of a surface. It is dmilar in spirit to  the approach 
of Lee and Kuo [8] but does not require the linearisation 
approximation used in their work. 

In our method, the surface M approximated by a linear 
combination of 2-D uniform bicubic spline basis function8 
with control vertices placed on a regular grid in the image 
plane. The control vertices are estimated by minimising 
the total squared brightness error subject to  the irradiance 
equation. Regularisation is used to make the problem well- 
posed in which the bending energy is used to constrain the 
shape to be smooth. The experimental results on two diffi- 
cult shapes demonstrate the effectiveness of the algorithm 
to  recover shape from a single shaded image. 
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