
MVA'94 IAPR Workshop on Machine Vision Applications Dec. 13-1 5, 1994, Kawasaki

A MODIFIED SIMULATION ENVIRONMENT FOR RECONFIGURABLE MULTICOMPUTER
SYSTEMS I N DIGITAL IMAGE PROCESSING APPLICATIONS

Francisco J. Quiles Flor and Antonio Garrido del Solo
Dpto. de Informbtica. University of Castilla - la Mancha

Campus Universitario
02002 Albacete (Spain)

ABSTRACT

In our work we improve the EPPI
programming environment, which was made in
the University of Castilla - la Mancha one year
ago. EPPI is a tool for simulating parallel
algorithms that runs on a monoprocessor
standar computer under the Unix operating
system, what makes i t easily transportable. This
environment provides a set of tools oriented to
digital image processing, whereby it is very
adequate for performance stidies of parallel
architectures and algorithms. Although it was
first built to sumulate NETRA architecture [I],
i t can now admit different topologies,
shared/distributed memory configurations and
a variable number of processors with floating
point capacity and several simulation
parameters, providing also information about
execution of the algorithm, allowing capacities
of debugging and optimization. In this paper,
our shows the tool EPPI with a comparison
module which allow to compare different
architectures and algorithms.

INTRODUCTION

I t is quite usual, a t present the use of
parallel architectures in digital image pro-
cessing applications, because of the high
computational capacity required by a great
number of techniques [2]. Moreover, in most
low intermediate level applications, the intrinsic
parallelism of the operations procedures high
speed-up. Since parallel computers are not
always available, the simulation of their
behaviour on standard hardware computers is
very valuable, providing the user an optimous
set of specific and general tools for digital
image processing.

There are other simulators of parallel
architectures [4] [5] [6] [7] [8] for applications
of image digital processing which are generally
characterized by their need to use computer
networks or multicomputer systems a s support.
VISIX [9] and EPPI [lo] [l l] are examples of
these cases. For the design of EPPI, we have
used a s support a UNIX (DG/UX) kernel an a
computer AViiON 4120 and graphic monitor.

INTERNAL STRUCTURE

provide as a whole the simulation capacity
above mentioned. Four of them correspond with
the original design of EPPI, and the fifth one
provides the ability to compare several
configurations for a given algorithm. They are
a s follows:

Fig 1: Modules

- Printing/visualizing module: I t constrains
image visualization tools and extraction by
printer. I t also incorporates specific functions
related to image visualization. Such a s false
colour, palette management, etc. This is a
distributed module, and i t can be executed on
a different computer connected by a local
network. The visualization module operates in
distributed mode, the exchange of information
being carried out by means of i ts own protocol
denominated PEV which, in turn, is supported
by a standard RCP protocol. Figure 3 shows its
basic structure. The user is provided of
functions for image display with printing and
other tools, on laser or matrix printer. Figure
2 shows the display system

DISPLAY IMAGE

The environment presented consist of Fig 2: Display of system
five modules perfectly integrated, which

-

INPUT COMMAND

OUTPUT INFORMATION

-

FILES

STATUS

--

Fig 3: Structucture of P/V module

- w - 2zF Yldlk
EL
YDmrr

- Execution module: i t is resmnsihle for t.he
simulated execution of the code. Usina the
user's program a s starting point and the
advanced functions in the library, i t
accomplishes the parallel execution. The
programming model used is the SPMD [12],
being also available discriminant functions of
processors which allow the processing in SISD,
SIMD and MIMD modes. Fig 4 show the internal
process in digital image processing.

- 7
EPPl

RCP

P

mffRNEl

Fig 4: Internal Drncnns

- Evaluating module: I t works in two stages. In
the first stage, the information about the
execution of a programme on a simulated
architecture is registered. In the second stage,
the information is analysed generating tables
and graphics on different execution parameters.
Figure 5 shows the two previous stages. While
the simulat,sd deorit.hm i s heina executed, the
EPPI-ECD module captures the data stored in a
file. In the second stage. the EPPI-EAD and
EPPI-EGD submodules generate the different
evaluation parameters.

I I I ,
I

RCp

,,,

- Topology configuration module: I t allows the
definition of topologies on which the simula-
tions can be carried out. I t has a comfortable
user interface and generates a configuration
file that can be stored in a topology library.

Fig 5: Evaluating module

* . .,

w . ,

* - . - - - .,

,------- --.,

The interface with the user is made up of
three windows. The configuration window shows
the data of the present configuration (version,
topology denomination, number of neighbours
per processor). The menu window presents the
options available: create, erase, initialize, and
see connexion. The introduce window ia used to
dialogue with the user. The error window is
used to inform the user about errors in the
introduction of da ta Finally, the connexions
window shows all the links defined between
processors.

- -

Rep

p

E W M

- Com~arison module: This new module provides
the ability of compare several configurations
and architectures, giving also information
relative to the adequation of the algorithm to
the architecture. It is possible to save the
results of other executions in a data base, with
the aim of comparing the behaviour of a given
architecture with different types of algorithms.

Fig 6: Comparison module

DESIGN

Unlike other parallel implementations, our
work starts from the duality physical
processor-logic processes, simulating the
different processors though process of the
UNIX operating system. This allows to use in a
controlled way the internal resources of the
operating system related to virtual memory
management, communication between process,
etc.

Fig 7: Example of mesh

Each process simulated evaluates in a
controlled way, being available a global watch
of the system and local watches that can be
synchronized by means of primitives. The
interconnection network is simulated by means
of logical channels queues which make use a t
low levels of thereceiving and sending call of
the operating system. In this way the different
topologies are simulated by means of a central
system of access to the tails from each
processor. Is possible to implementation of
deadlock detection procedures, based on a
resident process which informs the user when
and where it would be produced.

Fig 8: Synchronism

A relevant aspect is also that regarding
the reconfiguration of the interconnection
network. According to our design by only
modifying the structure of access control in
the network, any topology can be simulated
(including total interconnection). The user
generally defines (or chooses a topology
library) a predefined control structure in
accordance with the topology needed. The
system includes a tool to make easier the
definition of topology. This presents the
advantage that by using a stopping function
the reconfiguration of the network is feasible

by reinitializating the processors according to
the new communication pattern. Thus, our
environment allows the application of simple
reconfiguration algorithms.

The user can define the model of memory
desired and its size. A s far as the evaluation
module is regarded we have chosen to
integrate it within the environment, aiming a t
a greater execution speed, with the minimum
influence on simulation. Although this module
consumes an important part of the resources of
the system (memory, space in disk, processor's
time of use), this consumption is not 1
determinant: it is around 5% of total. It
presents storing capacity for a great number
of parameters relating message traffic,
processors and general architecture
parameters. I t also provides information about
traffic in the channels, real latency of origin-
destination routes, speedup in function of the
number of processors, evaluation of the
execution of specific processors, etc.

UTILIZATION

EPPI users must simply introduce the
code to be executed, indicating which processor
has to be executed. Parameters must be
previously established.

Next we win show the result of simulating
an tresholding algorithm in a mesh topology
with a variable number of processors 1131.
Figure 9 shows the original image to which the
algorithm is applied and figures 10 to 12 shows
the result of the simulation of a variable
number of processors. Figures 13 to 15 shows
results of simulation.

Fig 10: Simulation with 2x2 mesh

Fig 11: Sirnulalion with 4x4 mesh

~ l p 12: S~tnulatlon with 8x8 mesh

1 1 1 4 (9 1 1 6 I 2 5 1 3 6 (4 9 1 6 4

1 1 1 1.47 1 1,626 1 1,675 1 1.66 1 1.653 1 1,629 1 1,566

Ndmero de procesadores
Fig 13: Speedup vs processors

0 . '
1 1 4 1 9 1 1 6 I 2 5 1 3 6 1 4 9 1 6 4

Ndmero Procenadom

Fig 14: Time vs processors

ACKNOWLEDGMENTS

This work was supported by Comisf6n
Interministerial de Ciencia y Tecnologk (CICYT)
under project PB092-511 and University of
Castilla-La Mancha (Spain).

REFERENCES

[I] A.N. Choudhary, J.H. Pate1 "A Parallel
Processing Architecture for Integrated Vision
Systems", in 17th Annual International
Conference on Parallel Prosessing, St. Charles,
IL, pp. 383-388, August 1988.

[2] A.N.Chourdhary, J.N.Pate1. "Parallel
Architectures and Parallel Algorithmes for
Integrated Vision Systems". Kluwer 1990.

[3] A. Choudary and S. Ranka, "Parallel
processing for computer vision and image
understanding", IEEE Computer, vol 25, no 2,
Feb-1992

[4] B. Bruegge, C. Chang, R. Cohn, T. Gross,
M. Lam, P.Lieu, A. Noaman and D. Yam. "The
Warp programming environment in Proc.". 1987
Nat. Comput. Conf., AFIPS, Chicago. 11, June
1987, pp 141-148.

[5] G. Marino, G. Succi, G. Levo, R. Pavesio
and T. Vernazza "A system-independent tool
for developing applications on MIMD architec-
tures", PACTA September 1992, pp. 536-46.

[6] K.M. Nichols, J.T. Edmark. "Modeling
Multicomputer Systems with PARET". Computer
IEEE, May 1988.p~. 39-48.

[7] L. Snyder. "Parallel Programming and the
Poker Programming Environment". Computer
IEEE, July 1984, pp.27-36.

[8] Min-You Wu, D.D. Gajski. "Hypertool: A
Programming Aid for Message-Passing Sys-
tems". IEEE Transactions on Parallel And
Distributed Systems Vol. I, No. 3. July 1990, pp.
330-343.

[9] A. Reeves, "Software Computer Vision
environments for parallel computers", Parallel
Architectures and Algorithms for Image
Understanding, Prasanna-Kumar 1991, pp 453-
472

[lo] F.J.Quiles. "Arquitecturas Paralelas para
Visi6n Artificial". Departamento de Informdtica.
Universidad de Castilla-La Mancha, 1992.

I l l] F. J. Quiles, A. Garrido and M. Vicens,
"EPPI: Entorno de programacidn paralelo
orientado a1 tratamiento digital de imfigenes", V
Simposium Nacional de AERFAI. Valencia 1992,
pp 326-336.

[12] A. H. Karp, "Programming for paralelism",
IEEE Computer May 1987, pp 43 - 57

[13] D.V. Ramanamurthy, N.J. Dimopoulus ans
K.F. Li. "Parallel Algorithms for Low Level
Vision on the Homogeneous Multiprocessor".
IEEE. Trans. on Computer.1986. pp .421- 423.

