MVA'94 IAPR Workshop on Machine Vision Applications Dec. 13-15, 1994, Kawasaki

FROM STEP EDGE TO LINE EDGE:
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ABSTRACT

As a Gradient detector produces two extrema when ap-
plied to a line, we propose an original method which
is based on snch a detector but which appropriately
res—ponds to both step and line edges. The main ideas
are [irst to identify line contours using geometric and pho-
tometric properties and second to substitute a line for a
single contonr using a simple geometric algorithm.

1. INTRODUCTION

Early vision begins with the computation of a compact
deseription of the raw image intensity. Physical edges
provide fundamental visual information since they corre-
spond to the discontinuities of the physical and photomet-
rical properties of the objects. Consequently, edge detec-
tion consists in characterizing these variations in terms of
the physical phenomena at their origin. The most com-
mon edge detectors deal with step edges [10, 2, 4], How-
over, a grey scale image contains various kinds of edges
coming from dilferent scene events and different physical
phenomena. For example, an object on a uniform back-
ground or fingerprints give rise to line contours, called
pulses or roofs, in the digitalized image. When applied
to such an image, the Canny detector [2] or a similar one
produces two extrema rather than one. For this reason,
specific detectors, like line detectors [17] or ridge detectors
[5. 'r']. have been created. Other line detectors directly
work on binary or grey scale images using a thinning al-
gorithm [12, 3]. However, a line or a ridge detector gives
spurious responses to other kind of edges. Works have
been proposed to select appropriate step edge detectors
to find a given edge [8, 18]. Our approach focuses on both
step and line edges.

We give in the second section the properties of the re-
sponse of a line to a step edge detector. These properties
are used to identify lines included in the image. The
search and location of line edges include three steps. In
the first step (cf. Section 3), all possible paiss of closed
and parallel segments are considered as candidate lines.
Pairs which are generated by lines must have the typi-
cal profiles of the roof and pulse edges. In the second
step (cl. Section 4), the pairs of segments are connected to
complete the corresponding line edge, and the extremities
of the lines are examined. In the third step (ef. Section 5),
the peaks are searched. Examples of the results we obtain
are presented in sixth section.

2. PROPERTIES OF A LINE EDGE

We define the propertics of a line edge in terms of the
Gradient of the Gaussian in the following way (Fig. 1.a):

C'(.r] = Anf.l'(f = fn) = 1’1.|)'f(.1‘ — l']}.

where Ap and A; are the lefl and right contrast of the line
edge, and f{ is the Heavyside function [15]. The response
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c: A statrcase model with Iy = <3, 1) =3, Ap = Ay = 1.
d; The Gradient of the Gaussian o = 1).

Figure 1. The line step and staircase models [Tuh9/].

of this model to the first derivative of the Gaussian is:
1
F.(z,0) = —;(Ang«-(r —=lo) = Args(x = 1)),

2
-k . B " .
liﬂc 2+7 is Lthe Gaussian filter. This re-

sponse has two extrema (Fig. 1.b) which generate a double
step in 2D. On these contours, an edge lollowing [6] and
a polygonal approximation [16, 9] generate two close seg-
ments, theoretically parallel, which are the edges of the
line contour. However, a donuble contour can also be gen-
erated by a double step, shaped like a staircase (Fig. 1.c).
With the same notations, a staircase model can be defined
in the following manner [15]:

where gq(z) = -

E(x) = AoH(z — o) + Ay H(x =),

Falsiay —O%(Aoyg(r L) Avgali = 13):

Figure 1.d shows the response of function . The norm
of the Gradient presents two extrema for both staircase
and line models (fig. 1.b and 1.d).

We use the profile to characterize the two contour mod-
els. The profile of a double contour corresponds to the
three means of the grey levels of the three zones respec-
tively on the left hand side, in the middle and on the right
hand side of the double contour. For a line edge model,
the mean of the middle zone is either greater or less than
the other two. For a staircase model, the mean of the
middle zone is hounded by the other two. Therefore, a
line is defined by its profile and two chains of parallel seg-
ments such as their distance is smaller than six times the
standard deviation of the smoothing filter. This distance
is roughly the size of the Gaussian filter [14, 15].
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a: Intrinsic attributes. b; Computed attribules.

Figure 2. A segment and its attributes,

a: Closed and pam!isf segments.
b: Querlapping parallel seqments.

Figure 3. Two segments 1, j with (1), (2) and (3) fulfilled.

3. LINE STEP COMPUTATION

A segment 1 is characterized by intrinsic attributes: O,
the origin of the segment, 2, its extremity, [;, its length
and 0;, the angle between the segment and the horizontal
direction (Fig. 2.a). Each cxtremiw S of i is associated
with intrinsic attributes n and a¥ which represent the
non-biased error on the Iocat:on of S in directions re-
spectively parallel and orthogonal to 1. These attributes
are assumed to be independent and define a so-called un-
certainty rectangle for each r'x!rt-milv of i. A segment, is
considered as significative l[n +n < ;. Using these
attributes, we define a .'-:o-callcd uncortainty hexagon h;
as the smallest region melnding 1 (Fig. 2.b). ll'aé. > cv}‘,}l.
the vertices [11 of this hexagon are defined as follows:

{

where i, is the unit vector parallel to 7 and 17 is the
unitary veetor orthogonal to 1. Bach segment i is provided
with a confide nrr‘ r:\io which only depends on the error

H* = 0; £ oy, 4% £ 0,0

Y = B + ol 4 £af, 9

o = arctin(ﬁ——‘j——L} on the attribute 0;.

A pair C;5 of wgmentq t and j are considered as parallel

[0:=0; | < T+l +e (1)
In our test data sct, T varies from 1 to 4 degrees. The

distance between two segments 1 and j is defined as

distli; )= dint(ha, b)) w0 AR AL 1), where h¥ and

hi are the sides of the nncertainty hrrx'lgrms hy and h;,
and d(a,b) is the Euclidean distance between fwo sep-

ments. The two segments 1 and j are considered as close
to each other il

if:

0 < dist(i, j) (2)
where Dy is the maximum internal width of a line
(Fig. 3.a). Tt is computed from the width of the filter
used by the edge detection (cf. Section2). Any pair of
segments verifying (1) and (2) is then considered as a
possible line.

Let C;; be such a pair. Let O; and [} (resp. O} and
E}) the projections of O; and 2 (resp. O; and [;) on the

Dinl
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n: A pulse, with an mternal zone.
b: A roof, without an internal zone,

Figure 4. The two sorts of line edge.

supporting line of j {rr.ear.-.
(@ 'mrlj (resp. [0,
T? (resp. 1% ), i and j are called overlapping pnm“r‘! sepg-
ments, O 1s a line edge if Lhe overlapping part is greater
than the minimum length of a line, Dpin. We considered
Dymin must he greater than Dy, in order to ensure line
edge is longer than thick. Thus C;; must verily:

i) (Fig. 3.h). I the segments
7] and 1) has a common part

rnm(i.}.., - |'1 ) 2 Dein

(3)

T and T},

where ‘:T;’ and r'.T-l. are the lenghts of

A pair Cyj verifying (1), (2) and (3) is associated with
three zones Zere, Zine and ZL,, which respectively repre-
sent the left external, internal and right external regions
of the candidate line cd;,c (Fig.4.a). Zin¢ 1s the quadrilat-

eral defined by T/ and Tj. Z..: (resp. Z..) is a rectangle

defined by T7 (resp. T}) and D. ., which is the mean ex-
ternal width of a line and which is considered equal to six
times the standard deviation of the smoothing filter. Let

Tierty Zimt and Zl. be the mean values of the pixels of
the original image in the zones Z.z¢, Zint and Z.,,. Il the
pair 5 result from a line edge contonr, %, is superior or
inferior to the others. Tlowever, because of the noise and
the discretization of the image signal, the mean value of
the pixels in a given zone is all the less significative as this
zone is small. FFrom their definition and equation (3), the
minimum surface of Z., and Z.,, is Doyt ¥ Dyyin. which
is experimentally large enongh to Zo,. and Z'_, he sig-
nificative. ITowever, from equations (1), (2) and (3), the
surface of Z;ni has no lower bound. Then we arbitrar-
ily consider that 7, is not significative if the surface of
Zint is less than a given constant 1, s, which is roughly
(Dumiw)? in our test data set. In this case, the profile of
the line cdge only inclndes Z.., and Z..,: We consider
that Uy; is a roof edge il the local maxima of the Gradi-
ent of the Gaussian which generated the segments i and
7 have opposite signs (Fig. 4.b). This simplified profile is
not robust but allows the rool edge to be distinguished
from the double step edge (Fig. 1.b).

To sum up, a pair Cy; is generated by a line edge if it
verifies (1), (2), (3) and:

San(GRAD()) # San(GRAD(3)),
with Sur face(Zin) < Dy,

Zint > Max(Zese, ZL ) o0 Zine < minZerr, 22,4 )
with Sur face(Zint) 2 Dayry.

1

If several pairs verify these equations for a same sr-gmc(-nz.
1, the segment 3 is selected so as to be the closest (o 1.
The pair C,; then become the line edge C{i}{j}, which
is completely defined by its profile Feyiyp,) and its two
chains C'h and Ch'. For the moment, each of these chains
includes a single segment, i and j respectively. We now
try and continue the chains using segments which do not
yet belong to a line edge.
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Figure 6. Detection of the extremities.

4. CONTINUING A LINE EDGE

Let @ he a line edge. 1t is defined by a profile Fy and
two ordered chains of segments Ch and Ch'. A so-called
[ree extremity of a line edge is the extremity of one of the
chains which projects an the other chain. The segment on
which this free extremity is projected is called continmed
seqment.  Let e be a segment from Ch having a free
extremity L and ¢ be the continued segment of Ch' on
which L projects (Fig. 5.a). A part of the segment ¢}, is
not yet used to form the line edge @. We then search for
a segment 1 which do not yet belong fo a line edge, such
that C,,-I verifies (1), (2), (3) and (4), i.e. such that 1

and ¢} form a line edge €. This line edge must have the
same profile and the same orientation as ®. The segment
tis called the conlinuing segment of the line edge ® at [

Let S he the origin of i such that § is on the same
side as L with respect to ey i and cf, have the same
orientation, given by the line edge @, Let " and L' be the
respective projections of S and L on ¢}, We can deduce
from the study of the ordered set of points (S,L,L,S")
that the line edges C and ® form cither the same line,
either two different conneeted lines or two different non
connected lines. In the optimal case, S and L are the
same point: the segment 1 is connected to the chain Ch
at L.

When the segment 1 antersects the line (L,L') in Y,
we consider that there are a possible Y-shape junction
between the two line edges @ and € and also a third
line edge. The line edge @ is then contmned using the
segments [L,}] and 1.

When the segment 1 does not intersect the line (L.L')
and C and ® form the same line edge, (S,L,L',S") cor-
responds Lo a zone of the same kind as Zi,.,.in which
the segment [S,1] has not been detected (Fig. 6.a). This
anomaly is caused cither by a line edge whoge width is
close to that of the filter used by the edge detection or by
an unbalanced line edge which divides the original image
into two regions having very different intensity levels. 17
there is only one line edge, we consider that the pair C,, in-
cluding segments [S,L] and [S,L'] must satisly equations
(1), (2), (3) and (4). However, as the distance (S,[.) may
be arbitrarily long, equation (3) can not be verified and
the surfaces of the external zones defined by C, no longer
have lower bounds. Therefore, the first condition of equa-
tion (4) is only true if either Surface(Z.zt) € Dauey or
Surface(Z.,,) € Dauryg. Il €, verify these restricted
conditions, the line edge @ is continned using the seg-
ments [L,5] and 1.

This process is ilerated until all the free extremities of
P can not be continned. Such a method provides good
results on the hody of the line edge but the extremities
of the line edge are not precisely located. The junctions
between the extremities of a line edge and other edges of-
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b: Bitmap Voronoi d'mqmm

e Geometrie Voromot diagram
The n'nmr‘?‘ﬁﬂfa are represented by circles,

d: Our simple geometric method.

Figure 7. Computation of the peak.

ten decreases the quality of the sepments. Tnomost cases,
only one of the twe segments constitnting the extremities
of the line edge is detected. This segment is the contin-
ued segment ¢ of the chain O, associated with the free
extremity L of the chain Ch'. This case is similar to the
continuation of a line edge, exeept that there is no contin-
uing segment which allows the chain Ch to be continued
at L. We thus create an artificial segment s such that it
forms a line edge of minimum width with ¢} | s and ¢, are
parallel with a full overlapping and the middle of s is on
cr. s is then gradually moved towards the extremity of
the line edge. When cither equation (1) 1s no longer ver-
ifieed or the projection S of the extremity S of s projects
onto the extremity of ¢, the extremity of the line adge
is reached. The segment [S,L] is then added to the chain
Ch and the point §' becomes the new extremity of ¢ :
The line edge & is complete.

All the line edges of the image are processed in that
way. We now have to solve a last problem: the computa-
tion of the praks.

5. COMPUTATION OF THE PEAKS

The ideal peak of a line edge is defined as the location of
the physical discontinuity which generates the line, Un-
fortunately, this location i1s hard to obtain. As the mean
width of a line edge never exceeds a few pixels, we con-
sider that the peak is centred on the line. Respecting onr
conventions, the centre corresponds to the set of inner
points equally distanced from the two chains of segments
representing the line edge. We compared four methods
to compnte Lhese points:

o A skeletonization [13] of the polygon obtained hy
connecting the extremities of the two chains of seg-
ments (Fig. 7.a): The result is a completely con-
nected graph of pixels and is located at the exact
centre of Lthe line edge. However, the detected peaks
are chains of pixels instead of segments. Moreover,
the extremities of line edges, as well as the portions
of line edges with a high curvature, are provided with
parasitic barbs,

A bitmap Voronoi diagram [11] in this same poly-
gon: We consider that a pixel helongs to the digram
il it is equally distanced from at least two non con-
secntive sepments of the polvgon and if there is no
other segment which is closer Lo the pixel (Fig. 7.10).
Although this method does not produce barbs, the
resulting peaks are also chains of pixels and the ex-
tremitics of the line edges are truncated.
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Figure 8. Two examples of our results,

® A geometric Voronoi diagram [1] in the polygon
(Fig. 7.c): This method has a high complexity and
produces piecewise defined curves, made of portions
of straight lines and parabols, which cannot be easily
used.

e A geomelric method which gives an approximation
of the centre of the two chains of segments (Fig. 7.d):
All the extremities of the segments belonging to one
of the chains are projected on the other. The pro-
jected points and the extremities of the segments cre-
ate new segments. The chain determined by the mid-
dle points of these segments form the peak. As the
two chains of segments representing the line edge are
locally parallel, the new chain obtained in this way
is close to a geometric Voronoi diagram but is easier
to use,

6. EXPERIMENTAL RESULTS

Experiments have been performed on many kinds of nu-
merical images. We present here only synthesized noisy
image and technical drawing, in Figure 8.

If few lines edges are not detected, the most part of lines
edges is globally relevant and very smoothed. The search
for the extremities, as explained in section 4, continues
the line edges whose ending segments are not detected
in the original contour image. Line edges and staircases
are efficiently identified by their profile. However, the
polygonal approximation of curved line edges generates
segments which are too small to be considered parallel
with overlapping.

7. CONCLUSION

This paper describes a method to identify line contours,
such that roof and pulse edges, from step edges. A line
edge is modelled as overlapping parallel segments having
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the profile of a line edge. Thus, our line detector can
deal with hoth steps and lines. We use a simple geomet.-
ric algorithm to substitnte every extracted line edge for
a single line. Fxperimentations prove the reliability and
robustness of our approach. Few line edges are actually
missed and extracted lines are well located. Connectivity
hetween other edges is globally reliable, and we are cur-
rently working on the location of all kinds of junctions
between step and line edges,
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