
MVA'94 IAPR Workshop on Machine Vision Applications Dec. 13-15, 1994, Kawasaki

A HIGH-SPEED CHARACTER CONTOUR-FILL METHOD
USING AN EDGE-FLAG LIST

Kazuki NAKASHTMA-t, Masashi KOGAt, Katsumi MARUKAWA.;.,
Yoshihiro SHIMAt, and Yasuaki NAKANOtt.

'tCentral Research Laboratory, Hitachi, Ltd. 1-280 Higashi-koigakubo, Kokubunji-shi, Tokyo 185. Japan
+-IFaculty of Engineering. Shinshu University. 500 Wakasato, Nagano-shi, Nagano 380. Japan

ABSTRACT
This paper describes a new, high-speed contour-
f i l l method for alpha-numeric and Japanese
Kanji characters developed to generate digital
bitmap image (binary image) patterns from
contour lines. The contour lines are expressed by
Freeman's chain code. We call this method the
Improved Edge-flag method. The speed of this
method is increased by using an edge-flag list
which stores the coordinates of the edge-flag
pixels. A comparison of two conventional
contour-fill methods with our method shows that
O L I ~ S is about 4-8 times faster in filling character
contours.

1. INTRODUCTION

Thc amount of data contained in character
contour-pattern information is far less than that
containcd i n image information. Therefore,
contour information has many advantages; For
example, i t can bc processed at high speed, and
used i n displays. printouts, and recognition
processes. The need for high-speed character-
image generation has risen sharply in recent
years duc to the rising demand for new machine
interfaccs such as desk-top publishing (DTP)
~lsing o ~ ~ t l i n e fonts which require high-speed
character-contour filling.

Many conventional contour-fill methods
have been proposed [1][2]. In this paper, we
focus on two conventional methods using
Freeman's chain-code (as shown in Fig. 1) to
express the contour lines. One is the edge-flag
method[3] which is an improved version of
Bryan's edge-flag method[4]. The other is the

edge-fill method[5][6] which is also derived from
Bryan's edge-fill method[4]. The conventional
edge-flag method has been proposed fos general
shapes. Thus, it has been applied to alpha-
numeric characters and compared with the cdge-
fill method in terms of speed[5][6]. However,
applicability of these two methods to Japanese
Kanji characters has not yet been demonstrated.

This paper compares the specd
performance of the two conventional methods
when applies to Kanji characters. The r e s~~ l t s
clarify the disadvantage of the edge-fill method
relative to complex patterns such as Ka~lji
characters. The edge-flag method is improved to
facilitate applicability to Kanji patterns. Using an
edge-flag list which stores the coordinate values
of edge-flag pixels iniproves the speed of the
edge-flag method. The speed of the two
conventional methods and the improved edge-
flag method were compared for alpha-numeric
and Japanese Kanji character processing. In the
conventional edge-flag method, the processing
time for numerals was 2.4 ms, while i n the
improved edge-flag method, i t was only 0.3 ms.
For Kanji, the times were 2.8 ms and 0.7 ms,
respectively. This comparison shows that our
new method is about 4-8 times faster than the
conventional edge-flag method.

0

Fig. 1 Freeman's chain code.

2. CONVENTIONAL CONTOUR-
FII,I, METHODS

2.1 Left- and Right-terminal Pixels
Figure ?(a) shows a digital bitmap (binary)
image of the number "6". Figure 2(b) shows Fig.
2(a) expressed by Freeman's chain code. The
chain-code numbers (from 0 to 7) arranged
along the contour lines are stored as a list. The
x-y coordinates of each contour-line pixel are
generated from this chain-code list. Images can
be expressed as a G(j,i) matrix. From here
fol.warcl, filling process refers to using this list
to control pixel filling.

Filling processes are predicated in this
section the process of based on determining the
edge-flag pixels from the chain-code list. Edge-
flag pixels are classified into two types, left-
tel.minal pixels and right-terminal pixels, as
shown in Figure 3. A left- (right-) terminal pixel
is actually the left-most (right-most) pixel for
each run-length of the image pattern. To
generate contour-filled images all pixels between
the pairs of left- and right- terminal pixels are
filled.
2.2 Conventional edge-flag method
The conventional edge-flag method consists of
two steps, as shown in Figure 4. The first step is
flag-image generation: by searching the chain-
code list. all pixels on the contour line are judged
as either left- or right-terminal pixels. This
determination is done using maps, as shown in
Figure 5. Fig. 5 shows two combination maps for
neighboring chain codes. The map in Fig. 5(a) is
used to identify left-terminal pixels, and the one

ut L 1. A--u
(a) P a t t e ~ 11 Illl.rec (C(i (c) C O I I I ~ L I ~ l ines
Fig. 2 A binary image and its contours.

Lr't-terlnlnal p ~ \ e l
W : R~ght-term~nnl p~xel

(b) Left- and nght- term~nal p ~ x e l s

Fig. 3 Left-terminal pixel and
right-terminal pixel of a scanline.

Substitute 0
for image G(j.i): I<j.i 5 n

7

Fill between pairs oftlag pixels for each
horizontal line G(j.i), and left-sided tlng

Fig. 4 Flow of the conventioal
edge-flag method.

in Fig. 5(b) is used for right-terminal pixels. In
literature cited [I] , the vertical edge-status is
used; however, the status makes essentially no
difference i n these maps. The left- and right-
terminal pixels are flag pixels set as marks in the
flag image (Figure 6(a)) which is the same size as
the character image.

In the second step, all pixels between the
pairs of flag pixels on each horizontal line are
filled, and the far-left flag pixel of each pair is
eliminated (Fig. 6(b)).

(a) Map for determining (b) Map for determining
left-terminal pixels right-terminal pixels

Notc : X denote\ an impn\qihlc' co~nhin:lt~o~~.
Fig. 5 Maps for determining terminal pixels.

(a) F l n ~ Iliiage (h) I . ~ l l ~ x i Itnape
Fig. 6 A flag image obtaincd by
the conventional edge-flag method
and its filled image.

2.3 Conventional edge-fill method
The conventional edge-fill method reverses all
pixels on the horizontal line of an image from a
pixel on the character contour line to the right
side of the image. Figure 7 shows an example of
the procedure followed in this method. Figures
7(a)-(c) show the procedure for the outer
contour image, and Figs.7(d)-(f) show the
procedure for the inner contour image. As is
clear, this method searches out the contour line
and reverses to the far right side of the image,
filling all pixels i n its path.

The edge-fill method also uses the maps to
determine flag pixels as in the edge-flag method.
The logic of these maps (Figs. 5(a) and (b)) is
given by the following two expressions of
inequality. In identifying terminal pixels, either
the maps or the following expressions of
ineqi~ality can be used.

I) Identifying left-terminal pixels:
If (dk+6) niod 8 > (dl,-l+l) mod 8, reverse
all pixels from the contour-line pixel to the
far right side of the image, including the
pixel on the contour-line.

9) Identifying right-terminal pixels.
If (dh+2) mod 8 > (dk-1+5) mod 8, reverse
all pixels from the contour-line pixel to the
far right side of the image, excluding the
pixel on the contour-line.

The dh is a Freeman's chain code, which appears
k times on a contour line. N mod 8 is the
remainder when N is divided by 8.

Fig. 7 An example of the edge-
fill procedure.

3. IMPROVED EDGE-FLAG METHOD

The conventional edge-fill method si~ffers a
significant loss of speed as the contour structures
grow more complex because the demands of the
reversal process to the right side of the image
increase as the contour becomes more complex.
The conventional edge-flag method si~t'fers from
a long processing time needed to search the flag
image.

If the x-y coordinates of the flag pixels are
stored in a list, called an edge-flag list, the
processing time of the conventional edge-flag
method can be decreased. Figure 8 shows the
structure of an edge-flag list. The number of
vertical elements in the list corresponds to the
number of vertical pixels in the character (flag)
image, and the vertical element values
correspond to the y-coordinates of the flag
pixels. The horizontal elements of the edge-flag
list is stored the values of the x-coordinates of
the flag pixels for each run-length. Because the
x-coordinate values for each horizontal line
appear along the contour line, these values must
be rearranged in order of size. Figure 9 shows a
flow of the improved edge-flag method.

4. EXPERIMENTAL RESULTS
AND CONSIDERATION

In this experiment we used 280 numeral\, 380
alphabetical symbols, and 140 Kanji characters.
The experimental apparatus was a 76-MIPS
workstation and the data structure for the images
was 1 byte per pixel. Some example pattern
images are shown in Fig. 10. The images were
56 x 70 pixels in size, with the pattern located
nearly in the center of the image.

The two conventional contour-fill methods
and our new improved edge-flag method were

Fig. 8 Edge-flag list.

I

Substitote 0 for image G(j.i); l<j,i 5 n

the j-th line of an edgc-Ilag list.
(If the pixel is left- and right-
terminal pixel. rcpcnt two limes
o l this procedure.)

Rearrange values of edge-flag
list for each horizontal elements.

edge-flag list for each horizontal
elements.

Fig. 9 Flow of the lmproved edge-flag method.

compared in terms of speed performance. The
results are shown in Table 1. Processing time for
the conventional edge-fill method for a Kanji
pattern was 4.5 ms, clarifying the unsuitability
of this method for complex contour patterns.
With our new method, the processing time for
numerals was 0.3 ms, for alphabetical symbols it
was 0.3 ms, and for Kanji it was 0.7 ms, about
one eighth, one eighth, and one fourth,
respectively the times for the conventional edge-
flag method.

In the conventional edge-flag method all
pixels of the flag-image must be searched
individually to detect whether or not to fill them
because the flag pixels store the image. In
contrast, the improved edge-flag method
searches only the edge-flag list, which has far
less entries than the number of image pixels.
Thus, the decrease in the number of pixels
requiring searching has effectively reduced the
filling time.

5. CONCLUSION AND FUTURE WORK

Two conventional contour-fill methods and the
improved edge-flag method were evaluated for
Arabic numerals. Roman alphabet symbols, and
Japanese Kanji characters. In doing so, we
clarified the unsuitability of the edge-fill method

u u

Fig. 10 Examples of pattern
used for examination.

Table 1 Character processing times.

Pattern 1 C. edge-llag C. edgc-lill I. edge-llag
mcrhodlmsl mcthodlmsl methodlmsl

numeral 1 2.4 1.9 0.3
alphabet 1 2.3 2.1 0.3

for Kanji character filling. By improving the
edge-flag method, we reduced the processing
time and obtained satisfactory results.

The data structure of the binary images
used in this study was 1 byte per pixel. The
processing time for hardware implementation is
expected to be affected by the data structure.
'Thus, the next step in our research will be to
investigate the optimum data structure for
images.

Kanji

REFERENCES

2.8 4.5 0.7

[I] Shani et al.. "Filling Regions in Binary Raster Images:

A Graph-Theoretic Approach," Proc. SIGRAPH'80.

Val. 14. No. 3. pp. 321-327(1980).

[2] Pavlidis et al.. "Contour filling in raster graphics."

SIGRAPH81. Vol. 15, No. 3, pp. 29-36 (1981).

[3] Li et al.. "Border Following and Reconstruction of

Binary Pictures Using Grid Point Representation,"

Trans. of Japanese IEICE.. Vol. J65-D (No. 10). pp.

1203 - 1210 (1982.10. in Japanese).

[4] Bryan et al., "The Edge Flag Algorithm - A Fill

Method Raster Scan Displays." IEEE Trans. C-30[11.

pp. 41-47 (1981).

[5] Nakashirna et al., "A Contour Fill Method for Alpha-

numeric Character Image Generation." Proc.

ICDAR'93. pp. 722-725. October 20-22. 1993.

[6] Nakashirna et al.. "A High Speed Contour Fill Method

for Character Image Generation." IEICE Tram. Inf.

& Syst., pp. 832-838, Vol. E77-D, No. 7. July. 1994.

C. : Conventional, I. : lmproved

