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This paper considers three-dimensional (3-D) scene anal- 
ysis and explores the role of models for this task. Both 
object and task models are included and the issues of 
model design and the mapping from image to model are 
raised. The imaging process produces a two-dimensional 
(2-D) image of a real-worlcl scene, while in the mod- 
elling process, a model of the real-world objects and 
tasks is built. The 2-D image is then analyzed using 
image processing and computer vision tools, in the light 
of the model built. 

In this paper, we propose a methodology to buil(l sym- 
bolic descriptions of images which addresses these is- 
sues. A major goal is to use non-pictorial means to 
specify a model of the world and the application. An- 
other goal is t l ~ e  separation of domain-tiepentlent and 
application-dependt.nt aspects of the problem from the 
independent aspects. To illustrate the metl~odology, 
a case-study of a 2-D blocks worltl is presentet!, for 
which a model specification using a Sym1)olic Descrip- 
tion Language (SDL), I~ased on svmbolic logic, is ],re- 
sented. The results of an experiment in I)uil(ling an 
object recognition application in this domain, using a 
user-designed symbolic object model, are discussed. 

Computer vision must produce a "useful" description 
of a scene depicted in an image, whose initial repre- 
sentation is an array of image intensity values. At the 
low-level vision stage, the ear1.v processing of the image 
takes place, and domain-indepmtle~~t image processing 
algorithms deliver more generalised image representa- 
tions to the higher-level vision stage (14arr 1982, Bal- 
lard and Brown, 1982). To cope with the changes in 
lighting and viewpoint, the effects of shape and sl~ati- 
ing, variations in the imaging process such as in camera 
angle and position, and noise at  the lower level, we need 
rich representations of the world at the higher level. 

Of the many high level representations used for three- 
dimensional (3-D) scene analvsis, model-1)ased meth- 
ods have been very popular (Pope, 1994, Zl~ang et a]., 
1993), though other approaches that rely on knowl- 

edge of the context or function llave also been reportrd 
(Strat and Fischler 1991, Stark and Bowyrr 1991). Fur- 
ther, the term model often seems to rcfer to o1)jcct 
models, as in object recognition systems, and only oc- 

a Ion, as casionally to models appropriate to the applic t '  
in task planning applications. \lodels may be gromet- 
ric, quantifying shape information, or relational, sprc- 
ifying relationships between components in the scene. 
While building a model, issues such as what features to 
include in the model, choosing an appropriate motlel 
representation, the method of model acquisition and 
the genera1it.v of the model have to l)e ad(1ressed. Till 
now, most moclels have been acquired manually using 
common sense knowledge of the scene or by consulti~ig a 
human expert familiar wit11 the application, and this is 
a very time-consuming and error-prone process. 1lrtl1- 
ods for automatic model 1)uilding for scenes and tllc~ir 
images are not commonly availa1)le nor usrd. Finally, 
general-purpose models have proved difficult to 1)11iltl, 
and the motlels that were built were l~igl~ly tlo~nain- 
specific. 

There appear to be two issups here, namely nlodcl tle- 
sign, antl the mapping from image to model. In any 
recognition problem, it is acceptetl that the selectetl 
features and their representation are crucial for success 
( Connell and Brady, 1987). Thus in model design, 
high level features which are scene- and application- 
specific are defined, often by hand. The relationstlips 
between these features mav impose structure on the 
model, and the model representation must be capalde 
of representing this structure. Finally, given an image, 
the high-level features of the model must be mapped 
into low-level image features that may 1)e derived using 
image processing techniques. 

In this paper, we propose a me tho do log,^ to I)uil(l s y ~ n -  
bolic descriptions of images, which ad(lressc~s I)ot,l~ tl~cxe 
issues. The major focus of our proposal is a shift in 
paradigm for representing images. .4s opposetl to con- 
ventional pixel matrices and image-level propertirs such 
as  edges ant! their derivatives, we propose a shift to t,l~e 
symbolic domain where multiple levels of ilrlage propcr- 
ties and features are represented syml~olically antl ~uii- 
formly. A second focus is the separation of domain- 
dependent and application-dependent aspects of tlle 
problem from the independent ones. To illustrate the 
methodology. we undertook a case study of a two- tli- 



mensional (2-D) blocks world for which syn1l)olic de- strained scene, namely the l~locks worltl. This paper 
scriptions were generated automatically and tested on reports on this experience and the conclusions reaclletl. 
an o1)ject recognition system successfully (Lee, 1993). 
The paper descri1)es this study in detail. 

Overview 

T H E  METHODOLOGY 

The proposed framework accommotLates a variety of 
domains and applications in a uniform way, by sepa- 
rating the domain- and application independent image 
processing from the motlel design and mapping phases. 
Image features are obtained by applying low-level im- 
age processing techniques ant1 thereafter represented 
using a symbolic feature language. 

In a separate phase, the domain- or application depexl- 
dent aspects may be atl(lec1 in a number of ways. For 
example, as in Figure 1, a model may 1)e ciesignetl, in- 
cluding model features suital~le for a specific task in 
the domain, and the mapping from model features to 
image features is also designed. Significantly, 1)otll the 
image and model features are represented in the same 
sym1)olic language. We choose s~~mbolic logic, wllic11 is 
a well-studied and analysed knowledge representation 
technique in Artificial Intelligence, and there is a huge 
body of analysis tools to draw upon. Thus, a variety of 
problems in computer vision may be handled using a 
single toolkit which is readily availal~le, without the dis- 
traction of lower level image processing issues. Another 
advantage is the modular extensibility of the model, 
since in a symbolic representation, new features Inav 
be appended without affecting the earlier features. Fi- 
nally, in comparison to frames and semantic networlis, 
logic provides a flat structure which is an advantage 
when we do not know the relative importance of fea- 
tures and their relationships. This is also an advantage 
when we try to learn structure rather than supplv it 
ourselves by building it into the representation; this 
will be a focus of future research. 

We assume that only first order sym1)ols woul(l be used, 
so that a first order symbolic language should be suf- 
ficient to represent model features. We choose Prolog, 
which is a logic programming language 1)ased on Horn 
clause logic, a subset of first order pretlicate logic. A 
Prolog program works on a database of Prolog clauses, 
and attempts to prove theorems using the resolution 
principle. Our plan is to represent the model features 
using Prolog clauses, so that the tlescription of an im- 
age woul(l be a collection of Prolog clauses. The im- 
age may then t)e analysec1 t)y writing Prolog programs 
which work on the clauses representing the image. 

CASE STUDY 

To illustrate the approach and the n~ethoc1ology out- 
lined so far. we stutlied the prol~lem of automaticallv 
bnil(iing symbolic descriptions of 2-D images of a con- 

The domain chosen is the two-dimensional 1)loclis worltl, 
whose 01)jects mav include two-climensional polygons 
of any size, and also circles and ellipses of any r a( I '  111s. 
Besides being an oft-studied, antl hence "l~encl~mark" 
domain, we think that polygonal 11locks are sufficient to 
provide a good approximati011 of 2-D shapes in many 
constraineti domains. In our methodology, 1)otll the 
domain and the application in the tlomain ought to be 
specified beforehand. We chose ol~ject recognition as 
our application, based on an ol)ject model specified 1)y 
the user. A working 2-D sym1)olic model 1)uilding sys- 
tem has been implemented and tested successf~~lly for 
01)ject recognition. 

The major effort was spent on tiesigning a svm1)olic 
description language suited to the tlomain and tlle ap- 
plication. This language is t11e vellicle that captures 
the appropriate model for the domain-application pair. 
Then, a mapping from low-level image features, 01)- 
tained by image processing techniques, to the high level 
features in the svm1)olic description language, had to 
be designetl. A number of images of the 2-D 1)loclts 
world were then run t l~rougl~ this svstem anti sym1)olic 
descriptions of the scenes ol~tained. Finallv, these tle- 
scriptions were fed into an ol)ject recognition program 
written in Prolog. The remaining su1)sections tlescribe 
the svmbolic description language and the experiments 
conducted. 

Earlier \ITork 

On a search of earlier models of the 2-D 1)loclts worlcl, 
we found that lines-junctions analysis tlue to Huffman 
and Clowes is one of the earlier motiels, antl descri1)es 
objects in an image hierarchically using lines, vertices 
and their relationships. Lines antl vertices are (Iirectly 
obtainable from an image and hence tlie mapping be- 
tween model features and image features is simple. Baciler 
presents a hierarchical model of o1)jects based not only 
on their physical attributes such as location and orien- 
tation, but also more abstract ones such as their mo- 
hilitv (Badler, 1975). Our main inspiration wns the 
paper by Ambler and Popplestone (Ambler and Pop- 
plestone, 1975), in which thev use o11ject features to 
describe objects. These fea tur~s  include spatial rela- 
tionships expressed in matl~ematical form. 

Symbolic Description Language (SDL) 

A symbolic motlel of the 2-D worltl is eml)ed(letl in 



a Svm1)olic Description Language (calletl SDL, here- 
after). \+'he11 we set out to design this language, our 
requirements included the following: 

to facilitate the representation of an image in a 
form amenahle to s,vml)olic processing 

r to include at  least the primitive features of 01)jects 
in the domain, so that more sopllisticated features 
can be built using them 

to allow flexibility in further processing and in- 
terpretation 

r to he ahle to plug into existing algoritllms and 
methods for applications in the domain. 

We chose to embed SDL in Prolog, which is a logic- 
programming language suitable for sv1n1)olic process- 
ing. This decision enabled us to l)uil(l applications 
quickly and cheaply, ant1 also to hook into other im- 
age processing and vision svstems easilv. 

The basic features included in SDL are of three types: 

1. locational features which represent locatio~i infor- 
mation of an ol~ject or part of an o1)ject 

2. geometric features wl~ich represent geometric prop- 
erties of an o1)ject or part of an 01)ject 

3. statistical features which represent statistical mea- 
sures derived from the image. 

Locational Features: Locational features descrihe the 
location of an object part or the locational relationships 
between parts, between o1)jects and parts, and between 
objects. Absolute locational features describe locational 
information in absolute co-ordinates wit11 respect to the 
whole image, whose origin is chosen at the upper left 
corner of the image hv convention. For example, the 
centroid of an object is an ahsolute locational feature. 
Table 1 shows some of these features. 

Relative locational features indicate locational relation- 
ships hetween objects and parts. For example, toRight 
(A ,  B) indicates that oljject B is to tlle right of o1)ject 
A. Table 2 shows more of t,hese features. 

Geometric Feakres: Geometric properties of o1)jects 
are captured hv geometric features. .4 geometric fea- 
ture may he quantitative, statistical or compound in 
nature. Quantitative geometric features (1escril)e mea- 
surahle geometric properties intlicatetl quantitatively. 
For example, mwArea indicates the area occupied by 
the ol~ject in the image. Table 3 lists some of these 
features. 

Statistical geometric features descril~e statistical geo- 
metric properties of an ol)ject, such as major variance 
and skewness. This statistical information cannot be 

measured directly from the image hut must be corn- 
puted. Table 4 lists some of them. 

Compound geometric features are constructed fro~n the 
quantitative ant1 statistical geometric features. Thev 
descril~e specific geometric properties which are deriv- 
able mat he ma tic all,^ from the others. An example is 
the perimeter of a closet1 ol)ject. Table 5 lists a few. 

Finally, wholistic image level features such as average 
brightness of the image, frame dimensions. the numl~er 
of objects in the image and a label for each o1)ject are 
also computed or assigned. 

As evident from the svntax of the features, SDL em- 
ploys Prolog-like relations to specifv the features. SDL 
is simple to use and interfaces cleanlv wit11 a Prolog 
environment. 

The environment 

We now describe the experimental setup and the hard- 
ware/software resources before descril~ing the image- 
model mapping. 

A high resolution CCD camera is used to acquire mono- 
chromatic images of 2-D blocks. A frame gral~her at- 
tached to an IBM-compatible PC gets the image and 
transmits it to  an Apollo Unix workstation. All further 
processing takes place on the Unix platform. 

Simple image operations, sucll as baseline correction, 
histogram generation and image averaging, Inav be (lone 
on the PC itself, using a package calletl DT-IRIS. wl~ ic l~  
is designed to be used with the frame grabber caltl 
DT2851 from Data Translation. On the Unix plat- 
form, we use the image processing package HIPS wllich 
has a rich set of library functions to perform advanced 
and complex image analvsis using C-calleable functions. 
Finally we used UNSIlJ-Prolog programming environ- 
ment for the ot)ject recognition phase of the project. 

Image-hlodel hlapping 

We now define mappings from image features to the 
model level features. The image level features are ac- 
quired from the image using standard image processing 
techniques. From these features, the model level fea- 
tures are built using the pre- defined mappings. Note 
that both sets of features are represented as Prolog 
clauses and hence are compati1)le for svm1)olic process- 
ing. 

The sequence of processing steps is as follows: 

1. image format conversion 

2. pre-processing operations 



3. thresholding to obtain binary image 

4. noise removal, and stretclling to remove (listortion 
due to different aspect ratios 

5. extraction of o1)ject features 

6. generation of symbolic descriptions. 

The output is a svm1)olic tiescription of the scene in 
SDL, which may be further analyzed 1)y symbol ma- 
nipulation software. 

Figure 2 illustrates a set of sample outputs for a 2-D 
blocks world scene. Figure 2(a) is the input image. Fig- 
ure 2(b) is created after extraction of image features. 

The Application 

The application cllosen to illustrate the utility of this 
approach is o1)ject recognition. For this purpose, an 
object model was built 1)y lland, after careful study of 
put~lished models citetl in the review. The motlel was 
encoded in Prolog anti sym1)olic descriptions of tlie 2-D 
blocks world images were fed into the o1)ject recognition 
program. Figure 4 is Prolog clialog window, illustrating 
outputs of the object recognition application for the im- 
age in Figure 2(a). Tlie program accepts queries a1)c)ut 
objects in the image and answers them after sym1)olic 
processing of t l ~ e  corresponding svm1)olic tlescription. 

CONCLUSION 

We propose a symbolic framework for descri1)ing im- 
ages and illustrate it by applying the nietl~odologv to a 
2D-ldocks world and l~uiltling an 01)ject recognition ap- 
plication on top of it. The metl~otlologv is general and 
applica1)le to a variety of scenes ancl applications. Tile 
symbolic tiescription language presented for the case 
study illustrates the metl~odology, and is not meant 
to be definitive. Currently, an application in the 3-D 
domain is being cleveloped, wliich we we tlli~ilr will es- 
ta1)lisli the extensilility of the metl~otlology for 3-D. 
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%sp a1 
Input prolog database f i l e  : a l . p r o l o g  
Producing prolog program f i l e  : al.sympro 
Loading UNSW Prolog 

UNSW - PROLOG V4.2 
: rec tangles?  
Object 5 i s  a  rectangle 
* *  yes 
: t r i a n g l e s ?  
Object 3 i s  a  t r i a n g l e  
Object 6 i s  a  t r i a n g l e  
* *  yes 
: c i r c l e s ?  
Object 7 i s  a c i r c l e  
* *  yes 
: e l l i p s e s ?  
Object 1 i s  an e l l i p s e  
* *  yes 
: p l l o b j  (4)? 
* *  yes 
: squares? 
* *  no 

Figure 3: Dialog window of object recognition system 



Figure 1: Schematic diagram of a symk~olic   nod el ling system 
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Table 5: Some compound geometric primitives 

1. 

2. 

3. 

4. 

start(objectnum,xstart,ystart). 
The first pixel of the object nurn has the coordinates (xstart,ystart). This is the first 
pixel found when scanning the image from the origin of the image, i.e. from left to right, 
and from top to bottom of the image. 
centroid(objectnum,xcen,ycen). 
The coordinates (xcen,ycen) is the centroid of the object num. 
vertex(objectnum,vn,x,y). 
Object nurn has a vertex with vertex number n at  (x,y). The value of n starts from 1. If 
the object has more than one vertex the value of n will be increased accordingly in each 
vertex statement. 
boundbox(objectnuml,xl,y1,x2,y2). 
Object nurn has a bounding hox with top-left corner at (xl ,vl)  and hottom-right corner at  
( ~ 2 , ~ 2 ) .  

Table 1: A1)solute locational primitives 

1. 

2. 

3. 

4. 

toFtight(objectnuml,objectnum2). 
Object numl is to the right of the object num2. 
toLeft(objectnuml,ol~jectnum2). 
Object numl is to the left of the object num2. 
atAngle(objectnuml,ot~jectnum2,19, length). 
Object num2 is a t  an angle th,eta measured from object numl and they are length units 
apart. 
above(objectnuml,objectnum2). 
Object numl is above object num2. 

Table 2: R.elative locational primitives 

1. 

2. 

3. 

4. 

rawArea(objectnum,area). 
The area of the object nurn is area unit square. 
majDir(ol)jectnum,mtlir). 
The direction of the major axis of the object nurn is mdir. 
minR.ad(objectnum,minrad). 
The minimum radius of the object nurn is minratl. 
maxPer(objectnum,maxp). 
The maximum perimeter of the object num is maxp. 

Table 3: Some quantitative geometric primitives 

1. 

2. 

3. 

majVar(objectnum,majvar). 
The variance along the major axis of the 01)ject nurn is majvar 
majSkew(objectnum,majs). 
The skewness along the major axis (3rd order moment) of the object nurn is majs. 
majKurt(objectnum,majk). 
The kurtosis along the major axis (4th order moment) of the object nurn is majk. 

Table 4: Some statistical geometric primitives 

1. 

2. 

3 

4. 

ratioR.ad(objectnum,rrad). 
The ratio of the minimum radius and maximum radius of the object nurn is rrad. 
shrwidth(objectnum,swidth). 
swidth is the shrink width of the ol~ject nurn ( half the number of shrink steps needed for 
the shape to disappear). 
circularity(ol~jectnum,circ). 
circ is a measure of the circularity of the object num. 
gyration(objectnum,gyr). 
gyr is the radius of gyration of the object num. 




