MVA'94 |1APR Workshop on Machine Vision Applications Dec. 13-15, 1994, Kawasaki

GENERATING SYMBOLIC DESCRIPTIONS OF TWO-DIMENSIONAL
BLOCKS WORLD

A. Sowmya and K. W. E. Lee
School of Computer Science and Engineering
University of New South Wales

Kensington, NSW 2052, Australia
email on internet: sowmya(spectrum.cs.unsw.oz.au

ABSTRACT

‘This paper considers three-dimensional (3-D) scene anal-
ysis and explores the role of models for this task. Both

object and task models are included and the issues of

model design and the mapping from image to model are

raised. The imaging process produces a two-dimensional
(2-D) image of a real-world scene, while in the mod-

elling process, a model of the real-world objects and

tasks is built. The 2-D image is then analyzed using

image processing and computer vision tools, in the light

of the model built.

In this paper, we propose a methodology to build sym-
bolic descriptions of images which addresses these is-
sues. A major goal is to use non-pictorial means to
specify a model of the world and the application. An-
other goal is the separation of domain-dependent and
application-dependent aspects of the problem from the
independent aspects. To illustrate the methodology,
a case-study of a 2-D blocks world is presented, for
which a model specification using a Symbolic Descrip-
tion Language (SDL), based on symbolic logic, is pre-
sented. The results of an experiment in building an
object recognition application in this domain, using a
user-designed symbolic object model, are discussed.

INTRODUCTION

Computer vision must produce a “useful” description
of a scene depicted in an image, whose initial repre-
sentation is an array of image intensity values. At the
low-level vision stage, the early processing of the image
takes place, and domain-independent image processing
algorithms deliver more generalised image representa-
tions to the higher-level vision stage (Marr 1982, Bal-
lard and Brown, 1982). To cope with the changes in
lighting and viewpoint, the effects of shape and shad-
ing, variations in the imaging process such as in camera
angle and position, and noise at the lower level, we need
rich representations of the world at the higher level.

Of the many high level representations used for thiree-
dimensional (3-D) scene analysis, model-based meth-
ods have been very popular (Pope, 1094, Zhang et al.,
1993), though other approaches that rely on knowl-

65

edge of the context or function have also been reported
(Strat and Fischler 1991, Stark and Bowyer 1991). Fur-
ther, the term model often seems to refer to ohject
models, as in object recognition systems, and only oc-
casionally to models appropriate to the application, as
in task planning applications. Models may be geomet-
ric, quantifying shape information, or relational, spec-
ifving relationships between components in the scene.
While building a model, issues such as what features to
include in the model, choosing an appropriate model
representation, the method of model acquisition and
the generality of the model have to be addressed. Till
now, most models have been acquired manually using
common sense knowledge of the scene or by consulting a
human expert familiar with the application, and this is
a very time-consuming and error-prone process. Metl-
ods for automatic model building for scenes and their
images are not commonly available nor used. Finally,
general-purpose models have proved diffienlt to build,
and the models that were built were highly domain-
specific.

There appear to be two issues here, namely madel de-
sign, and the mapping from image to model. In any
recognition problem, it is accepted that the selected
features and their representation are crucial for success
(Connell and Brady, 1987). Thus in model design,
high level features which are scene- and application-
specific are defined, often by hand. The relationships
between these features may impose structure on the
model, and the model representation must be capable
of representing this structure. Finally, given an image,
the high-level features of the model must be mapped

into low-level image features that may be derived using
image processing techniques.

In this paper, we propose a methodology to build sym-
bolic descriptions of images, which addresses botli these
issues. The major focus of our proposal is a shift in
paradigm for representing images. As opposed to con-
ventional pixel matrices and image-level properties such
as edges and their derivatives, we propose a shift to the
symbolic domain where multiple levels of image proper-
ties and features are represented symbolically and uni-
formly. A second focus is the separation of domain-
dependent and application-dependent aspects of the
problem from the independent ones. To illustrate the
methodology, we undertook a case study of a two- di-

mensional (2-D) blocks world for which symbolic de-
scriptions were generated automatically and tested on
an object recognition system successfully (Lee, 1993).
The paper describes this study in detail.

THE METHODOLOGY

The proposed framework accommodates a variety of
domains and applications in a uniform way, by sepa-
rating the domain- and application independent image
processing from the model design and mapping phases.
Image features are obtained by applying low-level im-
age processing techniques and thereafter represented
using a symbolic feature langnage.

In a separate phase, the domain- or application depen-
dent aspects may be added in a number of ways. For
example, as in Figure 1, a model may be designed, in-
cluding model features suitable for a specific task in
the domain, and the mapping from model features to
image features is also designed. Significantly, both the
image and model features are represented in the same
symbolic language. We choose symbolic logic, which is
a well-studied and analysed knowledge representation
technique in Artificial Intelligence, and there is a huge
body of analysis tools to draw upon. Thus, a variety of
problems in computer vision may be handled using a
single toolkit which is readily available, without the dis-
traction of lower level image processing issues. Another
advantage is the modular extensibility of the model,
since in a symbolic representation, new features may
be appended without affecting the earlier features. Fi-
nally, in comparison to frames and semantic networks,
logic provides a flat structure which is an advantage
when we do not know the relative importance of fea-
tures and their relationships. This is also an advantage
when we try to learn structure rather than supply it
ourselves by building it into the representation; this
will be a focus of future research.

We assume that only first order symbols would be used,
so that a first order symbolic language should be suf-
ficient to represent model features. We choose Prolog,
which is a logic programming language based on Horn
clause logic, a subset of first order predicate logic. A
Prolog program works on a database of Prolog clauses,
and attempts to prove theorems using the resolution
principle, Qur plan is to represent the model features
using Prolog clauses, so that the description of an im-
age would be a collection of Prolog clauses. The im-
age may then be analysed by writing Prolog programs
which work on the clauses representing the image.

CASE STUDY

To illustrate the approach and the methodology out-

lined so far, we studied the problem of automatically
building symbolic descriptions of 2-D images of a con-

66

strained scene, namely the blocks world. This paper
reports on this experience and the conclusions reached.

Qverview

The domain chosen is the two-dimensional blocks world,
whose objects may include two-dimensional polygons
of any size, and also circles and ellipses of any radius,
Besides being an oft-studied, and hence "benchmark”
domain, we think that polygonal blocks are sufficient to
provide a good approximation of 2-D shapes in many
constrained domains. In our methodology, both the
domain and the application in the domain ought to be
specified beforehand. We chose object recognition as
our application, based on an object model specified by
the user. A working 2-D symbolic model building sys-
tem has been implemented and tested successfully for
object recognition.

The major effort was spent on designing a symbolic
description language suited to the domain and the ap-
plication. This language is the velicle that captures
the appropriate model for the domain-application pair.
Then, a mapping from low-level image features, ob-
tained by image processing techniques, to the high level
features in the symbolic description language, had to
be designed. A number of images of the 2-D blocks
world were then run througl this system and symbolic
descriptions of the scenes obtained. Finally, these de-
scriptions were fed into an object recognition program
written in Prolog. The remaining subsections describe
the symbolic description language and the experiments
conducted.

lier Wo

On a search of earlier models of the 2-D blocks world,
we found that lines-junctions analysis due to Huffman
and Clowes is one of the earlier models, and describes
objects in an image hierarchically using lines, vertices
and their relationships. Lines and vertices are directly
obtainable from an image and hence tlie mapping be-
tween model features and image features is simple. Badler
presents a hierarchical model of objects based not only
on their physical attributes such as location and orien-
tation, but also more abstract ones such as their mo-
bility (Badler, 1975). Our main inspiration was the
paper by Ambler and Popplestone (Ambler and Pop-
plestone, 1975), in which they use object features to
describe objects. These features include spatial rela-
tionships expressed in mathematical form.

Symbolic Description Language (SDL)

A symbolic model of the 2-D world is embedded in

a Symbolic Description Language (called SDL, hLere-
after). When we set out to design this language, our
requirements included the following:

¢ to facilitate the representation of an image in a
form amenable to symbolic processing

e toinclude at least the primitive features of objects
in the domain, so that more sopliisticated features
can be built using them

e to allow flexibility in further processing and in-
terpretation

e to be able to plug into existing algorithms and
methods for applications in the domain.

We chose to embed SDL in Prolog, which is a logic-
programming language suitable for symbolic process-
ing. This decision enabled us to build applications
quickly and cheaply, and also to hook into other im-
age processing and vision systems easily.

The basic features included in SDL are of three types:

1. locational features which represent location infor-
mation of an object or part of an object

2. geometric features which represent geometric prop-
erties of an object or part of an object

3. statistical features which represent statistical mea-
sures derived from the image.

Locational Features: Locational features describe the
location of an abject part or the locational relationships
between parts, between objects and parts, and between
objects. Absolute locational features describe locational
information in absolute co-ordinates with respect to the
whole image, whose origin is chosen at the upper left
corner of the image by convention. For example, the
centroid of an object is an absolute locational feature.
Table 1 shows some of these features.

Relative locational features indicate locational relation-
ships between abjects and parts. For example, toRight
(A, B) indicates that object B is to the right of object
A. Table 2 shows more of these features.

Geometric Features: Geometric properties of objects
are captured by geometric features. A geometric fea-
ture may be quantitative, statistical or compound in
nature. Quantitative geometric features describe mea-
surable geometric properties indicated quantitatively.
For example, rawArea indicates the area occupied by
the object in the image. Table 3 lists some of these
features.

Statistical geometric features describe statistical geo-
metric properties of an ohject, such as major variance
and skewness. This statistical information cannot be

67

measured directly from the image but must be com-
puted. Table 4 lists some of them.

Compound geometric features are constructed from the
quantitative and statistical geometric features, They
describe specific geometric properties whicl are deriv-
able mathematically from the others. An example is
the perimeter of a closed object. Table 5 lists a few.

Finally, wholistic image level features such as average
brightness of the image, frame dimensions, the number
of objects in the image and a label for each object are
also computed or assigned.

As evident from the syntax of the features, SDL em-
ploys Prolog-like relations to specify the features. SDL
is simple to use and interfaces cleanly with a Prolog
environment.

» environment

We now describe the experimental setup and the hard-
ware/software resources before describing the image-
model mapping.

A high resolution CCD camera is used to acquire mono-
chromatic images of 2-D blocks. A frame grabber at-
tached to an IBM-compatible PC gets the image and
transmits it to an Apollo Unix workstation. All further
processing takes place on the Unix platform.

Simple image operations, such as baseline correction,
histogram generation and image averaging, may be done
on the PC itself, using a package called DT-IRIS. which
is designed to be used with the frame grabber card
DT2851 from Data Translation. On the Unix plat-
form, we use the image processing package HIPS which
has a rich set of library functions to perform advanced
and complex image analysis using C-calleable functions,
Finally we used UNSW-Prolog programming environ-
ment for the object recognition phase of the project.

Image-Model Mapping

We now define mappings from image features to the
model level features. The image level features are ac-
quired from the image using standard image processing
techniques. From these features, the model level fea-
tures are built using the pre- defined mappings. Note
that both sets of features are represented as Prolog
clauses and hence are compatible for symbolic process-
ing.

The sequence of processing steps is as follows:

1. image format conversion

2. pre-processing operations

3. thresholding to obtain binary image

4. noise removal, and stretcliing to remove distortion
due to different aspect ratios

5. extraction of object features

6. generation of symbolic descriptions.

The output is a symbolic description of the scene in
SDL, which may be further analyzed by svibol ma-
nipulation software.

Figure 2 illustrates a set of sample outputs for a 2-D
blocks world scene. Figure 2(a) is the input image. Fig-
ure 2(b) is created after extraction of image features.

The Application

The application chosen to illustrate the utility of this
approach is object recognition. For this purpose, an
object model was built by hand, after careful study of
published models cited in the review. Tlie model was
encoded in Prolog and symbolic deseriptions of the 2-D
blocks world images were fed into the object recognition
program. Figure 4 is Prolog dialog window, illustrating
outputs of the object recognition application for the im-
age in Figure 2(a), The program accepts queries about
objects in the image and answers them after svmbolic
processing of the corresponding svmbolic deseription.

CONCLUSION

We propose a symbolic framework for describing im-
ages and illustrate it by applying the methodology to a
2D-blocks world and building an object recognition ap-
plication on top of it. The methodology is general and
applicable to a variety of scenes and applications. The
symbolic description language presented for the case
study illustrates the methodology, and is not meant
to be definitive. Currently, an application in the 3-D
domain is being developed, which we we think will es-
tablish the extensibility of the methodology for 3-D.

REFERENCES

Ambler, A. P. and Popplestone, R. J. (1975) , Inferring
the positions of bodies from specified spatial relation-
ships, Artificial Intelligence, p. 157-174.

Badler, N. I. (1975), Temporal Scene Analysis: Concep-
tual descriptions of object movements, Tech. Rep. No.
80, Department of Computer Science, The University
of Toronto, Canada.

Ballard, D. H. and Brown, C. M. (1982), Computer Vi-
sion, Prentice Hall Inc., En glewood Cliffs, New Jersey.

Connell, J. H. and Brady, M. (1987), Generating and
generalizing models of visual objects, Artificial Intelli-
gence 31, p. 159-183.

Lee, K. W. E (1993). Generating symbolic descriptions
of images, B. E. Project report, School of Electrical
Engg, University of New South Wales.

Marr, D. (1982). Vision, W. H. Freeman and Co., New
York.

Pope, A. R. (1994), Model-based object recognition- a
survey of recent research, Tech. Report 94-04, Dept of
Comp. Sci., University of British Columbia, Vancou-
ver, BC Canada.

Stark, L. and Bowyer, K. (1991), Achieving generalized
object recognition through reasoning about association
of function to structure, IEEE Trans. Patt. Anal. Ma-
chine Intell. 13 (10), p. 1097-1104.

Strat, T. M. and Fischler, M. A. (1991), Context-based
vision; recognizing objects using information from both
2-D and 3-D imagery, IEEE Trans. Patt. Anal. Ma-
chine Intell. 13 (10), p. 1050-1065.

Zhang, S., Sullivan, G. D. and Baker, K. D. (1993).
The automatic construction of a view- independent re-
lational model for 3-D object recognition, IEEE Trans.
Patt. Anal. Mach. Intell., Vol. 15, No. 6, p. 531-544.

$sp al

Input prolog database file : al.prolog
Producing prolog program file : al.sympro
Loading UNSW Prolog

UNSW - PROLOG V4.2

s rectangles?

Object 5 is a rectangle
** yes

: triangles?

Object 3 is a triangle
Object 6 is a triangle
** yes

;. circles?

Object 7 is a circle
** yes

: ellipses?

Object 1 is an ellipse
- yes

: pllobj(4)?

LA d Yes

: squares?

L no

Figure 3: Dialog window of object recognition system

Phase |
Image of
1-D scene :
Image Features
Image =

i £

Mapping
Model-Image

Phase 2

)

Symbolic Modeller

= Processing

Y

Symbolic Language

|
Symbolic Model

of Image

Y

Application

Figure 1: Schematic diagram of a symbolic modelling system

ve

A

2(a): Input image

| S— —
2(b): Deriving features from input

Figure 2: Ge nerating symbolic model of 2-D blocks world

69

»
image

al.border

start(objectnum,xstart,ystart).

The first pixel of the object num has the coordinates (xstart,ystart). This is the first
pixel found when scanning the image from the origin of the image, i.e. from left to right,
and from top to bottom of the image.

centroid(objectnum xcen,ycen).
The coordinates (xcen,ycen) is the centroid of the object num.

vertex(objectnum,vn,x.y).

Object num has a vertex with vertex number n at (x,y). The value of n starts from 1. If
the object has more than one vertex the value of n will be increased accordingly in each
vertex statement.

boundbox(objectnuml ,x1,y1,x2,y2).
Object num has a bounding box with top-left corner at (x1,y1) and bottom-right corner at
(x2,y2).

Table 1: Absolute locational primitives

toRight(objectnum],objectnum?),
Object numl is to the right of the object num2.

toLeft(objectnum1,objectnum?).
Object numl is to the left of the object num?2.

atAngle(objectnuml,objectnum?, 8, length).
Object num?2 is at an angle theta measured from object num! and they are length units
apart.

above(objectnuml,objectnum?2).
Object numl is above object num2.

Table 2: Relative locational primitives

1. | rawArea(objectnum,area).

The area of the object num is area unit square.

2. | majDir(objectnum,mdir).

The direction of the major axis of the object num is mdir.
3. | minRad(objectnum,minrad).

The minimum radius of the object num is minrad.

4. | maxPer(objectnum,maxp).

The maximum perimeter of the object num is maxp.

Table 3: Some quantitative geometric primitives

1. | majVar(objectnum,majvar).

The variance along the major axis of the object num is majvar

2. | majSkew(objectnum,majs).

The skewness along the major axis (3rd order moment) of the object num is majs.
3. | majKurt(objectnum majk).

The kurtosis along the major axis (4th order moment) of the object num is majk.

Table 4: Some statistical geometric primitives

ratioRad(objectnum,rrad).
The ratio of the minimum radius and maximum radius of the object num is rrad.

shrwidth(objectnum,swidth).

swidth is the shrink width of the object num (half the number of shrink steps needed for
the shape to disappear).

circularity(objectnum,cire).
cire is a measure of the circularity of the object num.

gyration(objectnum,gyr).
gyr is the radius of gyration of the object num.

Table 5: Some compound geometric primitives

70

