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ABSTRACT 
Tripod operators (TO'S) are a versatile class of feature extrac- 
tion operators for surfaces. Thcy arc useful for rccognition 
and localization based on range or tactile data. Thcy extract 
a few sparse point samples in a regimented way, so that N 
sampled surface points yield only N-3 independent scalar 
features containing all the pose-invariant surface shape infor- 
mation in these points and no other information. They pro- 
vide a powerful index into scts of prestored surface rcprescn- 
tations. A TO consists of three points in 3-space fixed at the 
vertices of an equilateral triangle and a procedure for making 
several "depth measurements in the coordinate frame of the 
triangle, which is placed on the surface like a surveyor's tri- 
pod. They have complete six DOF isometry invariance and 
can be imbeddcd in a vision system in many ways and 
applied to almost any surface shape. Hcrc thc focus is an 
experimental study in which TO'S arc used to search a clut- 
tered range image for one of 25 known shapes, typically in 
milliseconds, with very fcw false positive dctections. 

1. INTRODUCTION 

This work is motivalcd by the long-standing observation that 
a small set (e.g., six to twclve) of point samples of the surface 
of an object is highly informative, and that it ought to be pos- 
sible to construct a procedure for mapping such data into the 
identity and/or pose of an objcct in essentially constant time, 
for a significant rangc of cases. Wc have largely succeedcd 
in doing this, using a gcomctric procedure called the tripod 
operator (TO). A typical TO is applied to a rangc imagc in 
approximately 2 milliseconds, as currently implemcntcd on a 
Sun SPARCstation 10, resulting in a hypothesis about the 
surface under the operator. A rangc image can be searched 
for a shape by repeatedly applying TO's at random places on 
the image. Potential applications include industrial parts 
recognition, target rccognition, mobile robot vision, and face 
recognition. 
In order to rapidly rccognize objects bascd on surface shape, 
especially if the library of known objects is large and/or the 
average complexity of each object's surface shape is large, 
one needs to make fcature measurements which are 
sufficiently informative, despite noise, that the reduction in 
the candidate set per unit computation time is acceptable. 
For example, one might reasonably measure this by the 
reduction in the Shannon Entropy of the set of identities 
and/or poses. By such a measure, stcady progress has bccn 
made in previous work. Grimson [4.5] and others [6,7.8,9] 
extensively developed thc idea of scarching for associations 
between image fcatures and modcl clcmcnts consistent with 
geometric constraints among the modcl clcmcnts, using 
interpretation trees to represent the consistcnt hypothesised 
associations (interpretations). However, intcrprctation trees 
require quadratic lime processing per modcl. This is miti- 
gated by using particularly informative fcatures. We have 
argued that TO's can be used cficicntly as such features 
[1,2]. A second conncction is that a TO can bc rcgardcd as 
precompilcd prcpruncd intcrprclaiion trccs having sparsc 
range pixels as thc imagc fcalurcs. This is lhcir original 
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inspiration. Lamdan and Wolfson [ lo]  contribute to cficicncy 
in model-based vision by providing precompiled gcomctric 
pointers among local features. This requires the ability to 
detect a reason;~bly small numbcr of rcusonably stable 
interest points and to define informative featurcs thcrc, 
whereas TO's arc to be uscd anywhcrc on a surface and thcir 
informativeness can be looked up. Stein and Mcdioni [ I l l  
describe local operators callcd "splashcs" with attractivc 
invariance properlics, but thcy have high computational cost 
and depend on unoccludcd and valid range pixels on certain 
geodesic lines. Thc RANSAC method [12] uses sparsc sam- 
ples economically to test a fit to a spccilic class of functions, 
but indexing is not provided; one must sequentially try func- 
tion classes. Many kinds of local feature dctcctors or match- 
ers have been explored for rangc images. For example, [I31 
concentrates on dihedral edges and [14] on the two principlc 
curvatures of smooth surfaces. The principle limitation of 
most of them appears to bc thcir discriminating powcr pcr 
unit computation. For example, estimators of the lwo princi- 
ple curvatures cithcr provide us with two rcal numbcrs worth 
of indexing information (and direction information), or the 
decision that the surface is not a good fit to a quadric in the 
current neighborhood. Thc former case allows discrimination 
of roughly q 2  local surfacc shapcs if we can rcsolvc q curva- 
ture values in noise. Thc latter casc rcquircs us to conlinuc 
looking for local fcaturc information (pcrhaps a dihedral will 
fit here or  a quadric patch clsewhcrc). TO's provide onc 
operation at a placc on a surface, yiclding a fcaturc vector of 
any dimensionality d, applicablc to nearly any s u r ~ ~ ~ c c ,  and 
potentially discriminating as many as roughly qd hypotheses 
about the objcct (andlor its pose) on which the TO I~cs.  

Tripod Operators are "somewhat global" and can sometimes 
straddle many surface undulations with its point samples, and 
span a large proponion of an objcct. Thcy can operate on 
sparse regions of a dcnsc rangc map, sparse data acquired 
actively from a sequential random acccss rangc scanncr (such 
as in [15]), or via a tactilc version of a TO. In earlier publi- 
cations, we argue that thc TO should allow very fast recogni- 
tion [ l ]  and prescnt supporting cxpcrilncntal evidcncc by 
discriminating 1 objcct from a library of 10 using in solnc 
cases only one TO placcmcnt, using synlhctic rangc data 121. 
In [3] we extend this LO the case of noisy LIDAR rangc 
images of isolated real objccts, using a Baycsian approach to 
obtain reliable recognition using a small numbcr (5 to 10) of  
low order (ordcr4) and high noisc (1110 the TO'S cdgclcngth) 
T O  placements. 

We have been studying TO'S using a soliwarc systcm called 
TRIPOD. which allows various expcrimcnts to be pcrformcd 
involving the application of various kinds of TO'S to rcal or 
synthetic range images, and thc use of various reprcscntation 
and matching methods on thc rcsulting feature space point 
sets. Our overall research goal is to dctcrmine the limits of 
performance of a vision systcm bascd on TO's, and to realize 
that performance in prototype vision systcms. Pcrformance 
measures of intercst to us include specd, classification error. 



tolerance of noise and occlusion, library size, storage require- 
ments, and ease of representing new shapes. Variables in 
such a vision system that effect performance include 

1. Edge length of operator 
2. Order of operator 
3. Efficiency of the algorithm that computes the operator 
4. What hypothesis verifier is used, if any 
5. Representation of the TO invariant signatures 
6. Indexing method used to assess proximity to signature 
7. Method for relating multiple TO'S on the same object 
8. Method for representing pose constraints 
9. Use of probabilistic reasoning 

The focus of this paper is the use of isolated TO placements 
to rapidly recognize instances of a set of 25 typical manufac- 
tured surface shapes in range imagcs containing a variety of 
known and unknown shapes. Items 4.7.8 and 9 above are 
outside the scope of this paper. Our two-part research stra- 
tegy is to fiist lcarn how to obtain the greatcst possible 
discrimination in the shortest time using individual TO place- 
ments, and in other work to exploit the rclative posc of multi- 
ple placements to further increase performance. 

2. REVIEW OF TRIPOD OPERATORS 

2.1 DEFINITION AND PROPERTIES 
A tripod operator consists of thrcc points in 3-space fixed at 
the vertices of an equilateral triangle of fixed edgelength e, 
and a procedure for making several "depth measurements in 
the coordinate frame of the triangle, which is placed on the 
surface like a surveyor's tripod. These measurements take 
the form of arc-lengths along "probe curves" at which the sur- 
face is intersected. Figure 1 shows three examples of TO's. 
Figure l a  shows a very simple TO with one line probe fixed 
symmetrically with respect to the rigid triangle ABC. The 
single scalar feature is the distance from the plane of ABC at 
which the probe intersects the surface. This resembles a 
mechanical optician's tool called a spherometer. We call the 
number d of scalar fcatures the order of the operator. Figures 
Ib and Ic show TO'S that can be viewed as a set of equila- 
teral triangles hingcd together so that all all d+3 points can 
be made to contact a surface. Thc angles of the d hinges arc 
the features. We prefer this type (callcd linkable TO's) 
because of their symmetry and uniform scnsitivity to noisc. 
A planar surface yiclds 8= 180' for all d fcature components. 
We will sometimes use $I = 8 - 180' instcad of 0 for convcni- 
ence. Many variations of thcse TO'S could obviously be con- 
structed. Feature noise is relatcd to rangc noise n by the 
approximate expression no = Slxnle, whcrc no is thc fcature 
e m r  in degrees, and n is cxpresscd in the samc distance units 
as the edgelength e. 

Figure 1. Examples of Tripod Operators: (a) Simple linear 
probe TO (b) Order 3 linkable TO (c) Order 9 linkable TO 

For an N-point TO, the N sampled surface points yield only 
N - 3 independent scalar features (the order d is N - 3). 
These features contain all the surface shape information in 
the 3N componcnts of the points, since they suficc to recon- 
struct the relative positions of the N points. Thcy contain no 
other information; For example, they have complctc six DOF 
invariance undcr rigid motions (the group R~xso(~) ) .  Thus, 
they depend on whcrc the tripod lies on the surface, but on 
nothing else. A key property is that only a 3-dimensional (at 
most) manifold of fcaturc space points can be gcncratcd from 

a given surface, for any dimensionality d of feature vector. 
since the tripod can be moved only in 3 DOF on a surfdce. 
This allows objects to be densely sampled with TO'S at 
preprocessing time with a manageable number of operator 
applications (typically, a fcw thousand) to obtain almost all 
the feature vector values obtainable from any range image of 
the object. This set is a kind of invariant signature. For 
brevity, we will call it the signature of the object or surface 
(with respect to a particular type of TO). It can be stored in 
bins (e.g., of dimension 3 or 4) for later eff~ient access of 
near neighbors to TO features measured at recognition time. 
These bins can optionally contain precomputed probability 
densities, analytic expressions for distances to nearby signa- 
ture manifolds, and partial or complcte descriptions of the 
relative poses of tripods and models, all to servc various pur- 
poses in a recognition system. 

2 2  PLACING A TRIPOD OPERATOR 
Since in some applications of the tripod operator, the compu- 
tation consists only of placement and a littlc indcxing, the 
cost of placing the operator should be kept small. This can 
be done by elliicntly implementing a procedure similar to 
the following. Consider placing thc TO'S of Figs. Ib or Ic on 
a dense range map. Point A can be choscn as any point on 
the image surface. lntcrpolation is to be done locally as 
needed (e.g., using piccewisc triangular facets). Point B can 
be found by moving along a line at orientation a in image 
coordinates (pixel indices) until the 3D distance IABl =e.  
This can be done in logarithmic time (essentially constant 
here) usin binary search. Then we search the circle of 
radius 5 d e  oricnted coaxially around the center of the wg- 
ment AB, using binary scarch. to find a point C close to the 
surface. A similar circular search yiclds each remaining 
point. A key step in thc circular search is the mapping 
(specific to a rangc scanner's geometry) from a point (x.y;z) 
to the indices of the range pixel whosc ray (x.y.1) lies on. 
This allows the frontbehind decision requircd by the binary 
search. In the case of a sequential random acccss range 
scanner, it may be elliicnt to monotonically search elliptical 
paths in image coordinatcs until the two distances being 
enforced (e.g.. IACI=e and IBCI=c) are both correct. The 
ellipses here are the projcctions of the previously dcscribcd 
circles onto image coordinates. Finally, in the case of a tac- 
tile TO, the computation is mechanical; thc fcature valucs are 
to be read from position transducers (e.g. from linear potcn- 
tiometers by an A/D convcrter). 

2 3  SYMMETRIES O F  SURFACES AND OF TRIPOD 
OPERATORS 
Surfaces with one symmctry. such as extrusions, surfaces of 
revolution, and helical projections produce only a 2- 
dimensional manifold in fcature space. Cylinders, having 
two symmetries, produce only a nearly circular 1- 
dimensional curve, and sphcrcs a single point. Scaling a TO 
by changing its edgclcnhflh docs not eKcct the signature of 
surfaces swept by a linc with one point fixed (e.g., cones, 
planar n-hedral vertices, and planar dihedral edges). Regard- 
less of the surface, an operator with a 3-fold symmetry (e.g., 
those in Fig. 1). produces signatures unchangcd by cyclicly 
permuting each triple of corresponding features. In Fig. Ic. 
the three 3-cycles (1.2.3). (4.56). and,(7.8.9) show this pro- 
perty, for features g l  through 49, respectively. This allows a 
3-fold storage reduction, c.g.. by permuting the fcatures so 
that $II is the largest. If thc TO, in addition, has h.andcdness 
symmetry (as our examples do), the signature can be 
modified by a procedure that allows recognition of the "other 
side" of any surface already recognizable. We call this inver- 
sion of a signature. It is done by by transposing ccrtain pairs 
of corresponding features (e.g.. (7.5). (1.2). (4.8). and (6.9) in 
Fig. Ic) and replacing each fcature value $I with 4. Also, the 
signature of the opposite-handcd (rellcctcd) version of a sur- 
face can be found by performing those transpositions without 
negating the features. 



2.4 T H E  STRUCTURE O F  T H E  T O  SIGNATURES O F  
SOME SIMPLE SHAPES 
We have been studying thc shapes of TO signatures [I61 in 
order to understand how thcy can overlap and to find ways to 
approximate them with algebraic and semi-algebnic expres- 
sions. Such approximations are expected to greatly reduce 
storage requiremcnts for large libraries. Thc sibmatures of 
order 3 operators (Fig. I b) wcre rendcrcd as a rotating cloud 
of points on a computer, selected 2D snapshots are shown in 
Fig.2. In the spccial casc of "smooth surface regions, the 
signature is nearly a circular ring coaxial with the diagonal 
axis. The oKsct and radius of the ring can bc readily used to 
compute estimates of thc principlc curvatures and other 
difirential gcomctric parameters [16]. Surfaces with C I  or 
C 2  discontinuities tend to produce signatures with similar 
numbers and kinds of discontinuities (e.g., Fig. 2c.d). and 
have roughly commcnsurate complcxitics of dcscription. 
Thus, this umbrella-shapcd 2-manifold can be well approxi- 
mated with a few polynomi;lls, whcrcas the discrete signature 
might need 20.O(X) points (scc Fig. 4) for thorough saturation. 

Figure 2. 2D projcctions of TO sibmnturcs takcn with the TO 
of Fig. Ib. (a) Supcrimposcd signaturcs of six hyperbolic 
paraboloid patches (Iargc rings), four elliptic patches (rings 
lying on a cone), and 10 sphcrcs (the points). (b) A torus; the 
signature is a piece of conc in @1@2@3 spacc. (c,d) A 90' 
planar dihedral, vicwcd diagonally and along @ I ,  rcspcc- 
lively. All signaturcs of this T O  h:tvc at least a 3-fold rota- 
tional symmetry about thc diagonal =q2=q3; all sibmaturcs 
in (a) and (b) arc surf;~ccs or curves of revolution. 

3. CONDITIONS FOR RELIABLE RECOGNITION 
USING A SINGLE T O  PLACEMENT 

The low dimensionality of TO signatures (three, at most) typ- 
ically allows the computation and storage of signatures con- 
taining (to a reasonable resolution) all fcature vectors obtain- 
able from a given surface shape, regardless of viewpoint. 
Moreover, since the feature space can have high dimcn- 
sionality (d=9 in thcse expcrimcnts) the signatures of 
different objects' surfaces frequently have little or no intcr- 
section, allowing recognition of some objects with only one 
placement of a TO on the image of thc object. Our experi- 
ments show that this circumstance occurs frequently with 
common shapcs, and also that signature overlap can usually 
be dealt with. A dcterministic viewpoint is taken here (When 
range error is a large fraction of TO edgelength, a probabilis- 
tic approach is essential). 

3.1 FALSE POSITIVES 
We will now derive sufficient conditions for precluding any 
false positive detections. Let us dcnotc by A the set of all 
feature-space points obtainable by applying a cenain TO to 
surface shape A. We call this the exact signature of shape A. 
Let A' denote some signature of shape A such that the 
greatest L 2  distance from any point in A to the ncarcst point 
in A' is 6. We call this a signaturc of A saturated to 6. This 
kind of signaturc can bc obtaincd in practice by lipplying a 
T O  a finite numbcr of timcs to a surface. We similarly define 
B and B6 for shape B. Now let A- denote the set obtained 
by deleting from A' all points within an L2 distance E of any 
point in B6. We call this procedure overlap removal and 
speak of subrracring one signature from anothcr. Now let v 

be the maximum Lz distance that sensor (and othcr) error can 
introduce, and B+ the set of points within v of B. Then B+ 
includes all points actually obtainable by placing a TO on 
shape B. Summarizing key staterncnts from above, 

1. I f ( b + ~  B + ) , g ( b ~  B)s.t. l ib+-bI1 <V. 
2. If (b E R), 3 (b6 E B8) s.t. I I b-b8 I I < 6. 
3. If (a- E A-) and (b8 E B6), I l a--b6 I I > E. 

Now consider a placcmcnt of a TO on shape B, producing thc 
noise-cormptcd fcature point b+ E R+ instcad of the 
corresponding exact point b E B. Suppose a- is the ncarcst 
point in A- to b t .  Then from I., 2. and 3. abovc, 

I I b+-a-I 1 2 E-&v. This means that we can ncvcr mistake 
a TO measurement taken from shape B for one taken from 
shape A using a threshold T if E >  ~ + v + T .  That is, if we 
index into the stored sibmature A- using a rncasured fcaturc 
value f, and find that a- E A- is within T of f, then if 
E 2 6+v+r, we arc sure that f is not in the sct R+,  and thus 
was not obtaincd from shape B. Figurc 3 makcs thc incqual- 
ity relation clear gcomctrically. 

(Boundary of exact slgnamre B 

CBoundary between A- and removed pan of A' 

Figure 3. Schcmatic illustrotion of ovcrlap rcmoval for TO 
feature space signatures 

3.2 FALSE NEGATIVES If ~ < 6 + v ,  now that a TO placc- 
ment can fail to dctcct a shape duc to insuficicnt saturation. 
This is generally of lcss imponancc than falsc positives, 
because negative classifications are simply thc dcfcrring of a 
decision, resulting in extra cxpcndcd timc to find ;in instance 
of the shape. If we want to bc surc th;u every TO mcasurc- 
ment from shape A will Icad to dctcclion (allowing false 
positives from othcr shapcs), we could tcst Ibr nenmcss of the 
measured point to the signaturc A+ using a threshold 
.r > 6+v. In section 4 we will sce that thc results of scction 3 
are overly stringent from a statistical point of view, e.g., wc 
can violate ~2 6 + v + ~  by a sibmificant margin and still havc 
very few falsc positives. 

4. EXPERIMENTS 

The purpose of thcse expcrimcnts is to study the discriminat- 
ing power of an individual TO placcmcnt. Thercfore, we use 
no preprocessing (exccpt range rectification) and no 
hypothesis verification here. Ncverthcless, this "purc" 
approach is quite powerful in many circumstances. In the 
experiments TO sibmaturcs wcre gcneratcd for 25 surface 
shapes. Next, ovcrlap removal and analysis was donc, fol- 
lowed by recognition experiments in which a spccified shapc 
is searched for until found. 

4.1 OBTAINING T H E  SIGNATURES 
T O  signatures werc generatcd for 25 surfacc shapcs by ran- 
domly placing an order 9 TO (Fig. Ic) on synlhctic range 
images of each shape 50,000 times. The resulting sibmaturcs 
were stored as discrete featurc-space points, with a numerical 
precision of lo. Duplicate feature vcctors werc removcd, 
reducing the 50,000 points to as fcw as 61 points for the Iargc 
cylinder and as many as 36,000 for thc outside trihedral 
comer. Then the 3-fold syrnmctry of this TO (see section 
2.3) was used to slightly increase the dcnsity of the signa- 
tures. These signatures correspond to ~ h f  section 3. 
although 6 was not directly controllcd. The 25 shapes wcrc 
chosen to include various discrimination challcngcs, e.g.. 
cylinder vs torus with thc same minor radius, and the 
hemisphere/cylindcr (with C2 discontinuity) dihcdral rcgion 
vs the cylinder or sphcre. Thc following arc the namcs and 



descriptions of the shapes: 
(NOTE: e = T O  edgelength, r = radius) 

0 plane plane 
1 cyl2e cylinder, r = 2e 
2 cy12p5e cylindcr; r = 2 . 5 ~  
3 sph2e sphere; r = 2e 
4 sph2p5e sphere; radius = 2.5e 
5 outcomer outside 90' trihcdral comer 
6 ballcyl2e hcmisphcrc-capped cylindcr, r=2c 
7 ballcyl2p5e hcmisphcre-capped cylindcr; ~ 2 . 5 ~  
8 incomcr insidc 90' trihcdral comer 
9 pcyl2e plane-capped cylindcr, r=2e 
10 pcyl2p5e plane-ciippcd cylindcr; -2 .5~  
11 dh270 270' planar dihedral (convex) 
12 dh90 90' planar dihedral (concave) 
13 tor2e4e torus; ~ 2 c .  R=4e 
14 tor2p5e4e torus; r=2.5e. R=4e 
15 phole2e plane-bottomed holc; r=2c 
16 phoIe2p5e pl;~nc-bouomcd holc; ~ 2 . 5 e  
17 dh225 225' pliiniir dihedral (ramp down) 
18 dh135 135' plllnnr dihedral (ramp up) 
19 peg2e cylindcr perpendicular to plane; ~ 2 e  
20 edgeholc2e cylindrical hole in planc; r=2e 
21 peg2p5e cylindcr pcrpendicular to planc; ~ 2 . 5 e  
22 edgehole2p5ecylindrical holc in plane; ~ 2 . 5 ~  
23 thshclf planar trihcdral; 90'. 90'. 270' 
24 thnotch planar trihcdral; 90'. 270'. 270' 
Some are inversions of each othcr; (5.8). (23.24), (9.15), 
(10,16), (1 1,12), and (17,18). In these cases we generated the 
latter by inverting the data from the former (see scction 2.3). 
We see in Table I that most psirs of the 25 shapes' initial sig- 
natures were already entirely disjoint (separation > 5') 
including a cylindcr (2) and the torus (14) with the same 
minor radius. Most ambiguous points were from sharcd 
parts; an inside trihcdral comer (8) contains an insidc 
dihedral edge (12). Later, we will use overlap rcmoval to 
make the final sibmatures (nearly) disjoint by design. 

Ave. 
NNdist 

10 100 1000 10000 50000 
#points 

Figure 4. Saturation graphs for rcprcsentative shapes. 

The results of section 3 show the importance of highly 
saturated signatures (small 6). Thcreforc we have studied 
the dependence of the dcgrce of saturation on the numbcr n 
of randomly placed ordcr 9 TO placements, for various 
shapes. Figure 4 shows loflog plot of the average L2 dis- 
tance o (in degrees) of a feature spacc point to its nearest 
neighbor versus n. We found that the dcpcndencc is approxi- 
mately o = cln'" ,  wherc k is approximately the dimension of 
the signature manifold. k = .952 for the cylinder, whose man- 
ifold has dimension 1. k = 1.89 and 1.92 for the 225' and 
270' dihedrals, rcspectivcly, whose manifolds have dimen- 
sion 2, and k = 2.94 for the fully three dimensional outside 
comer. The k values are slightly lower lhan the correspond- 
ing dimensionality primarily because of low-dimensional 
subshapes (e.g., the plane (k=O) is in thc n-hedral shapes). 
These empirical rcsults are consistent with the observation 
that the density of n random points on a k-manifold is 

approximately proportional to n*. Note that a is not Lhe same 
as 6; e.g., for pcy12p5e. 0=3.4, while about .I% of new 
points from this shape were farther than 10' from their 
nearest neighbor in our signature. Thus 6 > 10'. 

4 2  SIGNATURE OVERLAP 
Next, pairs of signatures wcrc proccsscd to rcmove ovcrlap 
(E = 5') with othcr shapes' signaturcs. Ccnain of these "sct 
subtractions" were forbiddcn; e.g., we did not allow shapes 
that are parts of othcr shhpcs to bc dclctcd. For cxamplc wc 
did not "subtract" dh90 from planc. The full set of forbidden 
pairs is (5,8,9,10,11,12.15,16.17.18,19.20.21.22.23,24) from 
0, (6,9,19) from 1. (7.9.10.21) from 2, 6 from 3, 7 from 4, 
(5.23.24) from l I, and (8.23.24) from 12, rcfcmng to the list 
above. Table 1 was computed before overlap removal, show- 
ing the percentage of shape A lcft after subtracting shapc B, 
for all 25' pairs. Notc that most of the signature pairs have 
little o r  no overlap, allowing easy discrimin;ition. 

Table 1 Overlap percentages (-- denotes 100%); shape 
indexed at lcft subracted from shapc indexed at top (&=5'). 

4 3  RECOGNITION 
Each signature was stored in bins in a thrce-dimensional 
array (using the first 3 fcaturc components) to facilitate ncar- 
neighbor lookup. At recognition time our system randomly 
placed TO'S on the synthetic range imagc of Fig. 5a, which 
contains instances of all 25 shapes, and labeled the locations 
of the TO'S as ambiguous or unknown (white) or as the shape 
currently bcing sought (black). The decision rule was to note 
whether the distance from the TO feature vector to the 
nearest point in the signature at hand was less than T, which 
was set to 5'. For each of thc 25 shapes, with range noise ini- 
tially zero to help isolatc crror sources, we applicd the TO 
enough times to obtain 50 correct detcctions of the shape. 
and recorded various rcsults such as the mean time (in TO 
operations) betwcen detections (MTBD) and d a ~  on any 
false positive detections. The MTBD can be regarded as lhe 
ratio of the image arca to the "cCTcctive area" of the shape 
sought, for a particular TO s i x  e. 

Figure 5. Noisy range imagcs showing rcliablc dctcction of 
shapcs by To's;  (a) tor2p5ck is dctcctcd in X pl;iccmcnu in 
a synthetic imagc. (b) dh270 is dctcctcd in 8 placcmenls on a 
LIDAR image with TO edgelength = 7 cm. Both took 
approximately 50 milliseconds. 



About 63% of thc TO placcmcnts on the imagc of Fig. 5a 
aborted due to contact of a probe point with a jump boun- 
dary, which is locally dctcctcd by pixel disparity. This is typ- 
ical for cluttcrcd sccnes and is a highly cflicicnt substitute for 
image segmentation. Thc following rcsults are dcscribcd for 
non-aborted placcmcnts. Thc smallcst MTBD values wcrc 
for plane (2.74) and thc tori (both about 5). The largest was 
for phole2e (483). the small planc/cylinder dihcdral at the 
bottom of the small holc. 

The estimated mean timc bctwccn falsc positivc dctcctions 
(MTBF) was = (none obscrvcd in scvcral thousand placc- 
ments) for 12 shapcs and varicd from 17.088 placcmcnls for 
incomer to 127 for pcyl2c (pcyl2pSc was falscly dctcctcd). 
Overall, the rcsults showed vcry fcw falsc positivcs, which 
were primarily due to thc lack of suflicicntly cxhaustivc sig- 
natures, lcading to failure to dclctc somc point common to 
two shapcs. Falsc positivcs due to unknown objects arc morc 
diffiult to prcvcnt, but arc fi~irly rarc. Thc false positivcs arc 
all due to violation of E 2 S+v+r.  If 6 wcrc 0 (cxa~ct  sign;^- 
ture). So 20+0+S0 would hold, precluding falsc positivcs. 
However. 6 excccds 10' in somc of thc si&maturcs used, due 
to small portions of thc cx;~ct s ipaturc R bcing farthcr than 
10' from the storcd si&moturc. This causcs no troublc for 
most pairs, bccausc thcy ;ire ;ilrcady scp;~ratcd by much morc 
than the imposed E bcforc ovcrlnp rcmoval. Howcvcr, our 
pcyl2pSe signature has both high 6 and high overlap with 
pcyl2c, causing the above problem. Wc found that we could 
drive sharply down the I'illsc positivc incidence by cithcr 
increasing E, which had the sidc clrcct of increasing thc 
MTBD by introducing f;rlsc ncgativcs, or by sampling morc 
to decreasc 6, particularly at thc low dcnsity places in thc sig- 
nature. The lattcr is morc attractive, bccausc it docs not 
compromise the MTBD rilles sibmificantly. Wc plan to pur- 
sue the construction of uniform dcnsity sign;rtures with 
tightly controlled 6 to addrcss this issuc. 

Having discussed how to ;)void shape conrusions in the 
absence of noisc, we ran somc rccognition cxaunplcs with 
added rangc noisc of peak valluc el40 (cdgclcngth c=.2, noisc 
= ,005). This yicldcd a peak displaccmcnt v=6.5" in fcaturc 
space. For example, for the two tori, with T = 5, wc found 
that at this noisc Icvcl, wcll within the capabilities of vitrious 
existing rangc scnsors, thcrc wcrc no falsc positivcs in 
thousands of trials, and only 10% of thc TO'S falling on  he 
tori failed to detect them. Their si&maturcs arc only 7' apart 
at their ncarpoints. This violates E 2 6 + v + ~  ( ~ = 7 ,  &=I ,  
v=6.5, ~ = 5 ) ,  but the probability ofthc vectors in Fig. 3 align- 
ing just right to cause a falsc positive appcars small, both 
considering the geometry of Fig. 3 and the experiments. 
Repeating this with rangc noisc ~ 1 2 0 ,  we found that the large 
torus was mistakcn for thc largc cylindcr 10% of thc timc (all 
of cy12pSe lies within 6.8' of tor2pSc4c). but all tor2c4c 
detections were correct. In ligurc 5b, we search a LIDAR 
image for the dihedral dh270 with rangc noisc = el23 (-3mm). 
The MTBD is about 15 placcmcnts, and wc saw no false 
positives. Our next slcp will bc to scek a systematic way to 
set E, T and 6, givcn thc avcngc noisc. for optimal perfor- 
mance. 

5. CONCLUSIONS AND FUTURE DIRECTIONS 

We have studied the ability of individual ordcr 9 TO'S to 
discriminate 25 surface shirpcs in a cluttcrcd rangc imagc and 
concluded thcy can in many circumstances do so rapidly and 
with very few Palsc positivc dctcctions. Conditions for 
guaranteeing this wcrc dcrivcd. A TO can bc applicd and 
interpreted in lcss than 2 milliscconds on a Sparc Worksta- 
tion. We plan to rcduce this time by sofiwarc optimization, 
and to study analytic approximations of TO signatures, com- 
bining pose constraints using multiplc TO placcmcnts, proba- 
bilistic approaches, and othcr topics aimcd at finding the 

limits of their performance. We arc considcring applications 
including LADAR-based target rccognition, industrial parts 
recognition, and landmark rccognition for mobile robots. 
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