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ABSTRACT hidden in this data set waiting for development by a 
numerical process which is known as reconstruction but 

Many new imaging technologies have evolved in the 
called inversion by the mathematicians. 

aftermath of computerized tomography (CT). In the field 
of non-destructive testing (NDT) the CT-machines are 
mostly extensions of instruments for digital radiography. 
In contrast to medical CT-machines the NDT-versions 
rotate the object instead of the gantry, utilize the 
magnifying power of the X-ray point projection system, 
and are equipped with a 2D-detector. Hence, utilizing a 
cone-beam for 3D-reconstruction instead of a fan-beam is 
an inviting possibility. In addition, the cone-beam is 
utilizing the X-ray source much more efficiently. 

The dominating reconstruction technique is filtered back- 
projection, at which a non-exact 3D-version was proposed 
by Feldkamp et al. An exact 3D-reconstruction requires 
that the full Radon space should be retrieved or computed, 
i.e. values for integrals over planes through the object. One 
such method was developed by Grangeat having the 
computation complexity O ( N ~ ) .  The direct Fourier 
method in the linogram version has been shown to 
preserve full image quality. In a 3D-case it has then been 
possible to implement the Grangeat method with 
O ( ~ ~ l o g ~ )  complexity. 

Exact reconstruction requires special source trajectories; a 
single circular scan around the object is not sufficient. 
Missing data may be compensated for in case there is data 
available for a golden part. Most if not all NDT-cases 
would benefit from the possibility to highlight (focus) on a 
subvolume inside the whole object. Physical constraints 
such as beam- hardening and scattering may in the end be 
the most severe limitations to 3D-cone-beam tomography 
for NDT. 

STATE-OF-THE ART IN TOMOGRAPHY 

Computerized tomography (CT) is a prime example of a 
technological break-through. Besides being a global 

To acquire new images from nature beats everything in 
science and engineering. In fact, modem science did not 
take off until the telescope and the microscope were 
invented some 300 years ago. Likewise, in more modem 
times several Nobel prizes have been awarded in imaging 
technology: Rontgen 1903, Ruska (electron microscopy) 
1986, Zemike (phase contrast microscopy) 1953, Gabor 
(holography) 1971, Klug (el. microscopy) 1982, 
Hounsfield and Cormack (CT) 1979, Binning and Rohrer 
(tunnel microscopy) 1986. Intensive research and 
developments continue all over the world in MR, PET, 
confocal microscopy and many other fields. 

The dominating application for CT is of course to examine 
the human body. The most modem machines have the 
following typical performance numbers and 
characteristics. 

- Fan-beam f 30". 
- 800 detectors along a circular arc 
- Slip ring to allow for spiral source-path 
- Reconstruction using filtered back-projection 
- Reconstructed image size: 512x512 pixel 
- Reconstruction time: 1 sec. 

3D-volumes still have to be reconstructed slice-by -slice, 
but the slip-ring (which supports all connections to the 
rotating gantry) has made 3D CT-volumes more easily 
accessible. Acquisition speed is still a problem as is the 
limited axial resolution compared to the in-slice 
resolution. The standard reconstruction method is filtered 
backprojection which requires approximately 1 GFLOP 
(Giga Floating Point Operation) for the image size 
512x512. Necessary computation speed is achieved with 
semi-custom "back-projection boards". 

success of its own, CT spawned wide-spread interests in For non-destructive testing (NDT) of small to medium 
new imaging techniques. Indirectly, Magnetic Resonance sized objects the tomograph can be designed quite 
imaging (MR), Positron-Emission Tomography (PET) differently from the medical case. See Figure 1. The object 
and many other modalities are descendants of this global is mounted on a turn-table which can be translated in all 
success which showed that the physical probe does not three coordinates. Thus, instead of letting the X-ray source 
necessarily have to produce an image directly. As long as and the detector rotate around the patient, we turn the 
the data acquisition is complete the image may well lie object itself. 
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Figure 1 

These machines are all descendants or rather 
augmentations of digital radiography. The detector system 
consists of an image intensifier followed by an optical link 
which maps the projection image on a CCD-array. Cooling 
and slow read-out makes it possible to get 12 significant bit 
accuracy from a 1024x1024 array at one framelsec. For 
medical CT this accuracy is not sufficient but for NDT the 
density contrast in the object is high enough to compensate 
for less accurate detector data. The image intensifier 
presents other problems, however. One of these is heavy 
geometric distortion which has to be calibrated and 
corrected for. In spite of its problems, the image intensifier 
is today the only viable and practical 2D-detector of 
reasonable size. The hunt is on to find an alternative, 
mostly behind closed doors in proprietary laboratories. 

Contrary to medical CT-machines, the tomograph in 
Figure 1 is able to magnify. Small objects are placed close 
to the X-ray source and the cone-shaped beam of photons 
creates a 2D point projection of the object onto the 
detector plane. As long as the object does not collide with 
the X-ray source during rotation and its longest diameter 
does not fall off the image frame any geometric 
magnification is acceptable. The resolution of the detector 
system is limited by the digital resolution in the detector 
but also the size of the X-ray focus. The latter can be made 
small but at the expense of excessive concentrated heating 
at a small spot of the X-ray tube target (the anode) or, 
alternatively, a reduced number of photons in the cone- 
beam. 

The 2D-detector in systems like the one in Figure 1 is 
potentially ready to be used for 3D-reconstruction from 
2D-projections but rather few are used in this way. Instead 
one or a few parallel slices close to the midsection of the 
source-detector system are reconstructed from a sequence 
of a set of parallel detector lines. For low magnifications 
the beam is only mildly divergent and these lines may then 
all be considered as receiving a set of parallel fan-beam 
projections. 

CAT image' 

As of today, only highly precious and precarious 
components have been subjected to NDT with X-ray CT 
on a more regular basis. Among these are turbine blades 
for aircraft engines, composite materials in critical 
industrial parts, and certain types of military ammunition. 

RECONSTRUCTION WITH FILTERED 
BACK-PROJECTION 

Filtered back-projection is a transform method. Like all 
such methods it is based on the Fourier slice theorem 
which is illustrated in Figure 2. A set of parallel projection 
data taken at angle $ + x/2 is equivalent to a set of line 
integrals through f (x, y). (The fan-beam case is possible to 
treat in a similar fashion). These line integrals are by 
definition 

the Radon transform W 
m 

Figure 2 



where Q is the distance from the origin to the line of 
integration. The Fourier slice theorem then tells us that 
the one-dimensional Fourier transform of a projection (a 
slice of Radon transform data) becomes a slice of data in 
the 2D Fourier transform of f (x ,  y) ,  i.e. 

Backprojection is equivalent to use each slice of the Radon 
transform as an image having constant values along the 
lines of integration. These images are summed. Observing 
the Fourier domain in Figure 2 d) e) we notice that the 
result is a heavy overemphasis of the low frequency 
content in the original object function f ( x ,  y) .  Hence, this 
inherent low-pass filter in the projection-backprojection 
procedure has to be compensated by a high-pass filter 
(ideally a rampfilter). 

The computation expense is dominated by the 
back-projections. Each of the NxN pixel in the result is to 
receive and accumulate a contribution from each of the 
O(N) filtered projections. Hence the complexity is O(N~) .  

As mentioned, a 3D-volume may be reconstructed as a 
sequence of 2D-slices. Seen as a measurement and data 
acquisition task this is highly inefficient, however. Any 
X-ray source produces photons in a cone-beam and the 
fan-beam system for 2D-reconstruction is wasting the 
majority of these measurement probes in the collimator as 
illustrated in Figure 3. The waste has to be made up for by 
longer integration time per detector value and/or lower 
signal to noise ratio. 

Cone-baam projection 

SO 

2 D  detector 

Figure 3 

Exploitation of the full cone-beam was first proposed by 
Feldkamp et al [I] and their reconstruction technique has 
become somewhat of standard in NDT-applications. The 
Feldkamp algorithm is a seemingly straight-forward 
generalization of 2D-filtered back-projection. See 

Figure 3. Each horizontal line of projector data retrieved 
from the cone-beam projection is filtered in very much the 
same manner as if it were an in-slice fan-beam projection 
in the 2D-case. Then, the filtered data are back-projected 
into the 3D-volume along the ray paths known a priori. 

The reconstruction result is not exact in the mathematical 
sense. That is, apart from all practical aspects, 
approximations, noise, geometrical limitations, etc, the 
reconstructed 3D density function will differ from the real 
object even if the detector had an infinite number of source 
positions. Object details along the plane of the circular 
source orbit are reconstructed exactly but the artefacts 
increase with increasing cone-beam angle. 

A comparative study of 3D-reconstructions have been 
performed [2] where the following 3D reconstruction 
techniques were implemented. 

i) Parallel slice assumption as mentioned above in 
connection with Figure 1. 

ii) The Feldkamp method. 
iii) The Grangeat method. 

For 12g3 resoution we interpret the results as follows. For 
"reasonable" image quality and freedom of artefacts the 
method i) works for cone-beam angles *O.SO, the 
Feldkamp method for * S o ,  the Grangeat method for * 9". 
With complete data capture, however, the Grangeat 
method works for any cone-beam angle as will be shown 
below. 

AN EXACT CONE-BEAM ALGORITHM 

According to Natterer [3] the inversion formula for the 
2D-case can be written 

Here, the Hilbert transform kernel 1/4n2@ convolved 
with the derivative operator yields exactly the convolution 
kernel which corresponds to the well-known rampfilter in 
the Fourier domain. The 3D-version of (3) is 

where e is now a 3D-vector in the 3D-Radon space where 
each point represents aplane integral over the object space. 
The angle 8 is a 2D-angle on the unit sphere (commonly 
denoted with the pair 8, @). This unit sphere s2 is also the 
domain of integration just as the unit circle is the domain of 
integration in the 2D-case. We notice that the rampfilter 
kernel in (3) is reduced to a plain second derivative in (4). 
Equation (4) may be interpreted as a recipe for 
reconstruction by which each filtered Radon data should 
be back-projected to all points in the plane from where it 
originated. 



The obvious question is: How can we get plane integrals SO 4 = cos2p ds (10'1 
\ ,  

from X-ray data which only represent line integrals? If the 
2D-detector data represent a parallel projection things are The derivative of (5) using (6), (7), (8), (9) and (10) 

easy. Any line in the detector plane then defines a plane 
through the object. Summing data along this line yields a n/2 m 

plane integral. The cone-beam projection is different. d 
Summing along a line in the detector plane does not yield a & 

= 

plane integral. -1112 0 

Fortunately, Grangeat has shown [4], that the derivative of 
the Radon transform is retrievable from cone-beam data. 
See Figure 4. Without loss of generality we place the 
(virtual) detector plane vertically through the object f. The 
detector harbors line integrals through the object Xf. A 
line of integration t in the detector plane defines a plane of 
integration, a Radon plane through the X-ray source S. 
The normal from origin 0 to this arbitrary plane is the 
3D-vector e and we write the Radon value for this plane as 
follows. 

Line integrals (detector data) in the y-direction are 
described by 

m 

From Figure 4 b) and 4 c) we have 

d ~ ( r )  = d@ rcos y (7) 

SC = SA cosy (9) 

This is (one formulation of) Grangeat's result. From inside 
out (11) gives the following recipe for computing the first 
derivative (in the radial direction) of the Radon transform 
off. 

i) Weight the detector data with the factor IISA, where 
SA is the distance to the source S. 

ii) Integrate detector data along the intersection 
line between the detector plane and the wanted 
Radon value plane. 

iii) Take the derivative in thes-direction (in the detector 
plane perpendicular to the integration line). 

iv) Weight the 2D data set resulting from one single 
source position with the factor ~ 0 l c o s ~ f l .  

In [4] the line integration ii) and the derivative 
computation iii) for the O(N2) points in a detector plane is 
performed with an O(N) procedure so that the total 
computation of Radon derivative values in O(N) detector 
planes is rendered the complexity O(N4). 

Figure 4 
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Thus, as indicated in Figure 5, the total procedure due to 
Grangeat consists of two distinct phases. In the first onewe 
convert the set of detector data to Radon data, i.e. to 
derivative of integrals over planes in the object. In the 
second phase, Radon data are used to reconstruct the 
object, not necessarily using the sampling indicated in 
Figure 5. In fact, following an idea by Marr [5], Grangeat 
in his work performed the reconstruction in two steps. 

The first of these steps assumes that Radon data are 
resampled at points which are situated on vertical planes, 
all of them going through the z-axis but having different 
rotation angle. For each such plane ordinary 
2D-reconstruction is performed which brings about a 
result which represents a set of parallel line integration 
values through the object. Hence, by assembling a 
horizontal set of these from each vertical plane we have for 
each horizontal plane the necessary set of line integrals for 
2D-reconstruction of horizontal planes of the object itself. 
This is the second step of the reconstruction phase. Using 
filtered back- projection the O(N) horizontal planes are all 
reconstructed with an O ( N ~ )  procedure. Thus, the second 
phase, from Radon data to object data, is also of 
complexity O(N4). 

FOURIER METHODS. LINOGRAMS. 

It is common knowledge that the so called direct Fourier 
method is inherently faster than filtered backprojection. In 
fact, the first paper using this technique was published by 
'Retiak and Eden in 1969 [6]. The principle is illustrated in 
Figure 6 and builds directly on the Fourier slice 
theorem (2). The projections, i.e. the Radon data, are 
brought to the Fourier domain just as in Figure2. 
However, instead of summing these we are using them for 
resampling (interpolation) the Fourier domain into a 
Cartesian grid. An inverse 2D Fourier-transform brings 
about the final reconstructed result. 
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Radial Fourier 
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2 0 inverse Fourier 
transform - 

Reconstructed object 

Figure 6 
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It is easy to see that by using FFT-operations, the 
complexity of the operations in Figure 6 is 0(N210gN). In 
spite of this advantage in speed, the direct Fourier method 
has been shunned in practice because of its alleged lower 
image quality. Usually, the Fourier domain interpolation 
is pointed out as the culprit. 

However, there are now accumulative evidence that these 
problems can be overcome [7], [8], [9]. As shown in [9] 
there are two problems with the direct Fourier method. 
One of these is indeed the highly cri'tical interpolation. The 
other one is an implicit inherent high pass filtering with a 
ramp filter. This will cause circular convolution in the 
Fourier domain unless special precautions are taken in the 
form of truncation of the convolution kernel and 
zero-padding the image function. In the Fourier domain, 
this corresponds to a modified ramp filter and double 
sampling density, respectively. 

The linogram technique for image reconstruction was 
proposed by Edholm [lo] and further developed and 
implemented by Magnusson for the 2D-case [ l l ]  and by 
Axelsson for the 3D-case [12]. The method may 
conveniently be portrayed as a direct Fourier method with 
an unconventional sampling pattern for the Radon space. 
See Figure 7. The samples are aligned along radial lines 
just as in Figure 6 but not along concentric circles. Instead, 
we identify four lobes where the samples are positioned on 
circular arcs. 

The virtue of this sampling pattern comes forward in the 
Fourier domain. We anive there from the Radon space as 
before using 1D Fourier transforms of data positioned 
along radial lines. In the Fourier domain the samples are 
now equidistantly located on concentric squares. This 
sampling pattern is much more regular with respect to the 
Cartesian grid than the circular symmetric pattern in 
Figure 6 so that only ID-interpolation is needed. In fact, 
using the so called Chirp z transform, no interpolation is 
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needed at all. The Chirp z transform is more complicated 
than FFT but retains the basic O(NlogN) complexity [12]. 

For the 3D-case, Figure 5, the Fourier-linogram technique 
may be employed in both phase 1 and phase 2 [13]. We 
notice that the most burdensome of the tasks in the first 
phase was line integration in the detector plane. However, 
this is equivalent to computing the Radon transform and 
we may then use (2) again, this time in the form 

"f = 5;; 5s$ (12) 

Thus, the implementation of (11) may then be done as 
shown in Figure 8 and the complexity is hereby brought to 
O(N310gN). The corresponding reduction of complexity 
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for phase two follows directly from the fact that it consists 
of O(N) 2D-reconstructions, each having the complexity 
O(N210gN) when applying direct Fourier techniques. 

In [12], Axelsson has shown that under reasonable 
assumptions, the Fourier techniques should win in speed 
over the original implementation of the Grangeat 
algorithm with a factor of 10 for a 512~512x512 volume. 
However, this remains to be validated in a practical 
implementation. 

LINGERING PROBLEMS FOR 3D CT 

From Figure 4 it is possible to infer that from one single 
source position S, all obtainable Radon data are situated 
on a sphere, the Radon shell of S which has SO as a 
diameter. Because of the finite extension of the detector, 
the shell is partly empty, truncated into umbrella-like 
surfaces which form the result of the first phase of 
Grangeat's method [4]. Neglecting this truncation effect, a 
full set of Radon data from a circular source trajectory is 
shown in Figure 9. It is easy to see that no Radon data are 
retrievable in the vicinity of the z-axis. If the object is small 
compared to the distance SO (small cone-beam angles) the 
missing volume may be negligible, for larger cone-beam 
angles the missing data section is bound to have a 
detrimental effect on the reconstructed result. 

The role of these missing data may be understood by 
applying the 3D Fourier slice theorem to Figure 9. Each 
radial line of data in Figure9 may be 1D Fourier 
transformed to contribute to the 3D Fourier transform of 
the object. But because of missing Radon data, near the 
z-axis the Fourier space will be empty or incomplete just as 
the Radon space. 

One remedy to this situation is to augment the horizontal 
circular source trajectory with a vertical one. The Radon 
space of the object will then be fully covered by one or by 
both trajectories. Actually, the dual circle is only one of 
several possible trajectories. Another one is to move the 
source (and the detector) on a spiral-like curve or a sphere 
as indicated in Figure 10. In the NDT-case (Figure 1) we 
may implement this by mounting the object on one tilted 
axis, the platform of which is rotated around a vertical axis. 

Figure 8 
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The combined incremental rotations around the two axes 
will make it possible to expose the object from almost 
every angle and avoid any missing data of the type shown in 
Figure 9. 

In many applications of inspection and quality control the 
sheer size and extension prohibit the use of a tomograph of 
the type shown in Figure 1. Therefore, a complete plane 
integral may be inaccessible even for planes which pass 
through the source position. This is to say that some data 
on the Radon shell itself are incomplete and will produce 
artifacts in the reconstructed result. 

This situation can only be handled by using extra a priori 
information. In many NDT-applications a "golden part" is 
available. Projection data are taken from the golden part 
under the same restriction as for the part under 
examination. Corresponding projections are then 
subtracted from each other and the difference is used for 
reconstruction. The difference image is not perfect but in 
many cases good enough for flaw indication and 
localization. 

In many cases, one would like to focus the reconstruction 
to a small subvolume somewhere inside the object, a 
region-ofinterest. In fact, one of the draw-backs of medical 
CT is the limited resolution (approx. 1 mm). It should be 
of tremendous importance if it would be possible to 
reconstruct a smaller part of the human body, e.g. a 
damaged vertebra, with higher resolution without 
increasing the resolution of the detector system 
correspondingly. For the medical CT no good solution 
seems to exist. For the NDT-machine of Figure 1, however, 
the following idea should be useful. First we reconstruct 
the whole object using a magnification which is low enough 
to make room for the whole object inside the detector. 
Then we increase the magnification so that parts of the 
projection of the object falls outside the detector. But since 
the object is now known, albeit in somewhat lower 
resolution we may fill in the missing detector data rather 
satisfactorily and proceed with the high resolution, 
reconstruction. Actually, it can be shown that one can use 
the Radon space instead of the object space as a basis for 
estimation and filling in such high resolution data which 
cannot be measured because of the limited detector. 

The basis for CT is the assumption that the X-rays are 
moving in straight lines and attenuated according to one 

single feature of the material, the attenuation coefficient$ 
The reconstructed image is a map of the function f (x ,  y, z) .  
However, these and some other assumptions are only 
approximately true because the X-ray source is not 
monochromatic; the X-ray photons have different 
energies for which the material has different attenuation 
coefficients. 'Qpically, the high energy photons are less 
attenuated than the low energy ones and the result is called 
beam-hardening. The ray becomes harder (to attenuate) 
the further it penetrates the object. 

Another phenomenon is scatter, which consists of photons 
which are evoked inside the object by the incoming 
photons from the source. These secondary photons have a 
totally randomized direction; they can be envisioned as a 
glow, some of which will reach the detector. Low-level 
signals at the detector run the riskof being drowned by this 
scatter noise. 

It should be noted that the scattering problem is much 
worse in cone-beam 3D tomography than in 2D 
tomography. In the latter case the primary cone-beam may 
be collimated into a fan-beam which causes only a small 
part of the object to glow. The cone-beam causes the whole 
object to glow. Larger objects that require to be placed 
close to the detector in Figure 1 may prove to be 
impossible to reconstruct from cone-beam data due to the 
unavoidable scatter problem. 
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