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ABSTRACT

We have developed the interactive deformable clay
modeler to provide a human designer with a method to
interact with the virtual objects. In our model, the
smoothness of the surface and the volume constancy are
guaranteed even if any deformation is applied. Our method
consists of two fundamental modeling concepts. One is the
representation of the objects by the sliced cylinder
model(SCM) and the other is smoothed contour model
based on the Snake. The SCM determines the rough shape
and the Snake makes the surface smooth,

I. INTRODUCTION

Recently, the modeling methods for representing the
natural and non-functional shapes as well as the
deformation of their shapes, called the deformable models,
have been proposed. These methods are applied to several
fields such as CG, computer vision and pattern recognition.
Our research aims at the development of the computer
supported conceptual design system for the 3D objects,
using these deformable modeling methods.

Pentland and Williams|[ 1] proposed the usage of the
super-quadrics to represent the elastic deformable objects
and applied it for the 3D object recognition. He also applied
the modal dynamics to reduce the computational cost for the
determination of the shapes. Terzopoulos and Fleischer{2]
represented both the motion and the form of the objects by
the new expressing method based on the theory of
elasticity. He applied the method for the representation of
the plastic clay as well. These methods, however, need
more effort to realize real-time deformation.

A model proposed by Sato and Numazaki[3] can
provide the interactive deformation of the plastic
rotationally symmetric clay. In this model, to reduce
computational time, the shape is represented by its 2-
dimensional contour described by a small number of
points. The modification operations can be applied just on
one of those points at one ime. Furthermore, the deformed
shape is determined by only a few points near the actually
modified point. The disadvantages of this method are that
the number and the positions of those points affect the
deformed shape, and that the smoothness of the
contour(surface) is not considered at all.

We have developed the interactive deformable clay
modeler which guarantees the smoothness of the surface
and the volume constancy. Our method consists of two
fundamental modeling concepts. One is the representation
of the objects by the sliced cylinder model(SCM) and the
other is the smoothed contour model based on the Snake.
The former determines the rough shape and the latter makes
the surface smooth. In both methods, the energy
minimization techniques are employed.
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2. VIRTUAL CLAY MODELER

2.1 Representation model of the clay

In our model, we assume the clay object has the
following design constraints.
(1) A clay object has a symmetrical form which is given by
rotating the contour line around the axis.
(2) The volume of the clay object does not change, even if
its shape is deformed.
(3) The 2-D contour is continuous and differentiable
(smooth).
The representation of the clay is shown in Fig.1. LetR be a
rotationally symmetric object. R can be obtained by rotating
its contour C,

C:o(u) = (X(u),¥(u)) (1

around y-axis, where O<u<l1, X(u) 2 0 and Y(u) 2 (. For
simplicity, hereinafter, we assume an object has no holes
inside, that is, the inside of R is full with the clay. We also
introduce the following constraints, in order to give fine
operational environment to the users.

(4) The area to be modified by one action should not be
limited to the narrow region.

(5) The rigidity of the clay can be varied by tuning some
parameters.

(6) Deformations are performed in real-time.

2.2 Sliced cylinder model (SCM)

In our model, the object R is constructed by a
collection of thin cylinders (Fig.2). Each of these cylinders
can be represented by its radius (x value of the contour C)
and thickness (difference of y value: dY). The shape of the
object R is modified by changing the radius and the
thickness of each cylinder under volume constancy. We
define the energy functions corresponding to the changes of
the shape and the position of the cylinders.
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Fig.1 Representation of R by the contour C.
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Fig.2 Sliced cylinder model.

Suppose that R is deformed from a cylinder S with
a unit height and with radius ro. Under volume constancy,

rradu = x X*dY (2)
ay _(Ton 3
du ~ [X) ®)

Therefore, dY/du decides the new radius X. The shape of
R is represented by the Y(u). Here, we assume that Y(u) is
increasing, a function of class €2, and Y(0)=0.

Next, we define the evaluate function. Let YO(u)
and Y(u) be the shapes of R before and after deformation,
respectively. First, for the change of the thickness of each
sliced cylinder, dY - dY©, we define the following strain
energy. Ly )
E, = 5k ﬁ;d;”

W WS
where k is a constant value. For the shift of each sliced
cylinder, Y - YO, we define the following energy
proportional to the shift.

(O]
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u

En =plY =Y (5)
where | is constant. The total energy with respect to the
modification of the sliced cylinders is defined as

1
Eﬂnmre = f [E. + Em }du
(1]

o Pl Ye 0
= /u (kG5 = 1 +ulY = Y¥)du  (©)
We call this model "Sliced Cylinder Model", in short SCM.

2.3 Smooth surface by the Snake.

We introduce an energy minimization technique
called Snake|4] to make the contour smooth. Snake is an
active contour model for detecting or determining contour
lines in images. The definition of the Snake is as follows.
Energy is defined along a curve, and the contour is
determined as the curve which minimizes this energy. This
energy is defined by the internal energy Ejpg, the external
constraint energy Econ, and the image energy Eimg. Let a
contour be v(u) = (x(u),y(u)), 0<u<l. The total energy is

)]

Eint operates so that the contour gets smooth. We use the
following Ejng to define the smoothing energy of our
model,

i 1

Esmootn = /E,,,tdu = /{alv‘,[’+,f1|t.-“i2}du
0 0

d*v

Yew = T2

1
Eanake = '[} (Eine + Etcm + El'my }d“

dv ®)

“"=E‘
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Fig.3 The given modifying operation.
The contour C (right) and its Y(u) (left).

where a and P are parameters which control the properties
of the contour.

3. DEFORMATION BY ENERGY MINIMIZATION

3-1 Rough representation obtained by SCM
The total deformation energy of R is defined as
follows by Emove and Esmooth-

Elalﬂf = Emmu- + E-mm(.ﬁ

Y e I T O,
= fu {3H(gE = U7 +ulY = Y°[)du ©9)

+ ful{ulvul’ + Blvgu| }du

We minimize this energy under the condition of volume
constancy (3). We employ 2 step minimization. In the first
step, Emove is minimized and the rough deformed shape is
obtained. In the second step, Eygral is minimized by the
Greedy algorithm|5] using the rough shape as the initial
shape of its iteration.

The detail of how to deform in the first step is
described below. Some part of the contour C is modified
externally, such as squashing its 0Sy<yq part to xg, as
shown in Fig.3. Where Y(u)>0, X(u)>0, Y(0)=0 and the
clay should be moved to the area of y>yp. In the area of
0<y<yo, the deformed shape Y(u) is determined by this
squashing,

Y(u) = (=) u (10)
To
Let ug be a value which satisfies Y(ugp) = yo,
Iy
g = (;;J’yo (1)
In the area of yp<Sy(up<u<l), the Euler's equation is
d .k Y
_____ =10
1 du{}"?(Y‘f‘ 1)} (12)

Here we must consider the boundary conditions for solving
equation (12). There are three sets of the conditions
according to the types of the deformation. The first type is
the case that the deformation is occurred locally in the area
of up<u<ui(<1) (Case I). In this case, Y(u)=Y%u) holds
in the area u>u]. The boundary conditions of this case are

Y(uo) =vo, Y(w)=Y%w), Yu(wy)=Y%w) (13)

u] satisfies

f—‘{m — ¥ %ug)} = /‘:{m — u)(¥Y9)?du (14)
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(c) Case lll.

Fig.4 The resultant shapes by the
sliced cylinder model.

We obtain u] by solving (14) numerically. Then, we get
the deformed shape with uj.

Y(u) = ’-;]"{u — wy)(YO)2du + YO(u) - YO(uo) + yo (15)
g

In this case, u] must be between ug and 1.

When u] becomes larger than 1, deformation
should be occurred in the entire area of ug<u (<1). The
second case is that Y(1) is possible to be larger than YO(1)
(Case II), such that u=1 means the top of the clay. The
boundary conditions of Case 11 are
(16)

Y(uo) =yo Yau(1) = YJ(1)
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Fig.5 The resultant shape
by minimizing E -

The third type is that Y(1) is fixed to YO(1) (Case III),
where u=1 means the bottom of the clay. The boundary
conditions of Case I1I are

Y(u) = yo , Y(1)=Y°1) (17)
We obtain the following equations (18) and (19) for Case 1
and Case III, respectively.

Y(u) = {:f"{u ~1)(YO)du + YO(u) - ¥%(uo0) + yo (18)
ug

Y(u)= %]‘[u —e)(Y2)du + YO(u) - Y%(uo) + wo (19)
g
Elyﬂ = yU(uu“ =k Jr:n "(}_-‘:))ldu
o f:ﬂ{ YO)du
Fig.4 shows examples of these three cases. When the
modification is operated to the central part of R, we use the
above methods independently on the upper and the lower

parts of the modified area.
In this method, the deformed shape and the area can

be changed by tuning the parameter p/k. In the examples

shown in Fig.4, p/k is 1.0 in Case I, and 0.1 in Case II
and Case II1.

3-2 Determination of the final deformed shape

In the second step of our method, we get the final
shape by minimizing Egogal by the Greedy algorithm. We
use the rough shape obtained in the first step as the initial
shape. We discretize the contour of the rough shape

C:v;=(X.,Y:), Xi=X(h), Y,=Y(h)
' ’ (20)
i=0,1,.,n nh=]
and
& ‘.H'l -Y, ‘\-t+| == ‘\‘i Yl-H = ro:'

h h
.\-|*| - 2(. + X._i 1'..1.. -y 2)’. + }"_l
h* g h?

Volume constancy (3) is represented,

(21)
)

l'“lll = [

Y=V (2

h T

Then, Yj of vi is moved in its neighbour if the value of
Eiotal is decreased by the move, and the coordinates of vj
and vj4] are also changed according to the move Y. This
process is applied sequentially and iteratively to all points vj
except those which are squashed externally, and terminated

) (22)
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Fig.6 Deformation when squashing
downward.
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Fig.7 An example of shape design.

if the number of the moved points becomes less than the
threshold value. Then, we get the final deformed shape
constructed by vj. Fig.5 shows an example of applying the
second step to the contour shown in Fig.4(a), where

a=1.0, B=1.0, p=1.0 and k=1.0.
4. EXAMPLES AND RESULTS

Some examples of deformation are shown in Fig.6
and Fig.7. Fig.6 indicates the deformation of the object R
when the external squashing operation is given downward
in succession, The operation is shown by the move of the
pentagon in the figures. In this example, the contour is

discretized by 64 points, «=1.0, B=1.0, p=1.0 and k=1.0.
The time taken to get and display the deformed shape is
about 0.3 seconds on Personal Iris 4D/35TG workstation.
Fig.7 shows an example of a created shape using our clay
modeler.

Our method satisfies the conditions (4) - (6)
described in Chapter 2: the deformed area is represented by
u] which is different for each deforming action, the rigidity

of the clay can be tuned by p and k, and the response is
quick enough for interactive operations.

5. CONCLUSION

We have developed the interactive deformable clay
modeler. Our modeling method consists of two
fundamental modeling concepts of the sliced cylinder
model(SCM) and the smoothed contour model based on the
Snakes, and employs the energy minimization techniques.
The features of our method are that a shape can be
deformed in succession, the rigidity of the clay can be
tuned, and the response is quick enough for interactive
operations.

We will extend this model for general 3D objects
and for a system which makes it possible for a designer to
create desired shapes more efficiently.
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