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ABSTRACT 
An essential research objective in artificial vision are 

shape &sct ip to~ which are invariant for mslation,  scale 
changes and rotations of a bidimensional pattem. k varj- 
ety of approaches has proved the capacity to characterize 
forms, like signatutes, 1-D Fourier descriptors, moment 
invariants, Complex-log (Log-polar) a m s f o m  or Fourier 
~lrmsfonn. None of these techniques can claim a general 
purpose applicability to every kind of 2-1) pattern. 

I n  this paper a method is proposed ror the shape de- 
scription of arhitmq compIex forrns that are composed by 
panmetric curves. This constraint of representability is 
satisfied for most patterns. Regions with holes e.g. can 
equivalently be charactesited by the contours of the sig- 
ni ficant parts (bundaries, holes). 

A method, &noled aq UNL rrunsfam performs a nor- 
maIization optration for msla t ion nnd scale changes and 
cau.ws rotations to appear as periodic translations in the 
transformed representations of the pattern. It creates an 
optimal input for a 2-D Fourier image tmnsfom which 
yields the n u m r i d  descriptors called UNL Fourier Fea- 
rures. It permits the mapping of any shape ro a single vee- 
tor lor point in a ndimensional space). 

The distinctive character orthe approach will k point- 
ed out, especially to the Complex-log aansform. 

The mdytic theory of the UNL transform is intro- 
duced, together with practical concepts to apply it in the 
discrete case where a pattern i s  given as a bitmap. Finally 
experimtntal results Tor a classification task are presented 
together with conceptual limitations of the approach, 

BidimnsionaI black and white shapes m either char- 
actesjzd by their contours and/or by their region if they 
posses an area The digit "5" is an example for the f rst 
category of pnttems and a box wilh a hole inside for the 
second catcgov. This most general classification [ l ]  
determines if a certain form descriptor method can be 
applied for the characterization of the panem or not. In 
order to evaluate the improvement that our method repre- 
sen@ compared with already existing methods, a bench- 
mark pattern is proposed. The stylized head of a robot in 
fig. 1, will be used for this purpose. Parts of it could h 
modelled by a region-based technique, like the head with 
eyes, nose and mouth. 'She antenna however m only rep- 
resentable by curves. 

For a general overview about shape representation 
methods consult [I], 121, [4], [ 5 ] .  

Signatures [ I  1, 131, [6] are only applicable locally to 
parts of the test pattern. The eyes, nose, mouth and bound- 
aries of the head can be representad as signatures. Tk an- 
tenna and most important the figure as n whole are not 
mappable to a single signature. Besides concave bound- 
aries are an insurmountable limit for this approach. That 
restriction of only local applicability is also valid For 
Chain codes [ I ] ,  [J] and polygonal approximations [I], 
Is], [9]. Fourier descriptors (FD) [ I ] ,  [ 101, [ I  11 have sirn- 
i l a t  limitations as signatures. For each primitive form that 
composes the rest paltern a proper TZ, is neeessay. No 
global Fourier series is available to store the form of !he 
panern in its totality. A Further drnwback of FDs are that 
the patterns in general are limited to closed curves. 

- 
Fig, I Test pattcm. 

Moments (normalized central moment%) are used to 
describe 2-1) images [El. 11 21. They me invariant to TSR 
msfomarions  (aanslarions, scale and rotations). A rep  
resentative application of moments together with FDs to 
recognize airplane silhouettes can be found in [131. See 
also [14],[15],[ 161. Like the 2-D Fourier transform md the 
Complex-Log transform which will be chancterized be- 
low, moments are i m n g  oriented features. Basically one 
can state that the input for moment invariants are pixel 
values sampled at a certain image point Qy).  Momenr in- 
variants are not genented by mdytic infomat ion about 
the object gearnew. but rather by an insranriarion of an 
object on a 2-D pixel matrix. The shape tansfomations 
(TSR) are fried to be compensated for, regarding the pixel 
values. For our test pattem the method of moment invari- 
ants is only partially suited because the pattern consise 
only of fine lines. In all experiments that were based on 
moment invariants h e  paterns had an interior region. 
This suggests the empirical conclusion that moments are 
not appropriate to describe patterns where only boundary 
information is available. 



Special anention must be paid to the Complex-tog 
mmsform (Lo%-polar transfm) because it has some char- 
acteristics in common with the UNL ttansfom. The basis 
for this- fom &scripfor i s  the simulation of mapping smc- 
turns commonly found in the visual system of human be- 
ings [17],[18],[19]. In [20] thc Log-polar transform w a ~  
successfully applied for 2-13 shape recognition. A further 
andysis was performed in [21], where especially the 
drawbacks were mentioned. For an application in charac- 
ter recognition see 1221, This technique will be directly 
compared to h e  UNL m s f o m  in the next stetion. 

The 2-D Fourier m s f o m  FI7 of an image is a valu- 
able tool for the analysis of objem inside a scene. T h e  K 
is dso pixel oritnml, like moments and the Complex-Log 
msform. The input for the FF is a pixel value mpled 
from an image codinale: flx,y), For an introduction ko 
h e  IT see e.g. [ I ]  md (21. Itsl major drawback for direct 
pattern recognition is  its rotation variance. If only transla- 
tions of objects in a sene  occur the magnitudes of the FT 
are invarinnt, The UNL transfom will produce an image 
in which nt most periodic translations appear on one axis. 
Therefor we will use the R to p d u c e  the final shape de- 
scriptors, the UNL Fourier Features. For our test patlem 
she FF applied directly to the originaI image i s  not an ap- 
propriate shape descriptor. 

In order to complete the overview of existing 2-D 
shape descriptors one should also mention syntactic tech- 
niques [23] and auto~egressive models [24] ,[25]. 

W E  UNL TRANSFORM 

In this section we will draw the mathematical frame- 
work for our 2-1) pattern descriptor. What distinguishes 
the proposed methd from other shap representation 
schemata, esptcially the Complex-Lcg a3nsfom? The 
most important anribute of the UNC transform is it% ana- 
lytic approach to p e r f m  a pattern amsfomtion.  It im- 
plements a c o o d n a t e  mfom for parametric curves 
from Cartesian to n o d i z s d  polar coordinates. The ma- 
lybc equations of the pattern curves must be known to be 
able to transform the pattern. If these equations are not 
known a priori which in pracrice i s  most1 y Ihe case, they 
must be estimated. This esumstion is based an a binary 
pixel image. 

k formalization i s  given for h e  UNL transform and 
the UNL Fourier Features. Mathematical details will be 
shifted to the respective appendioes. The notion of com- 
plex numbers will be nsd to represent 2-IT coordinates. 
This allows a concise formalism. Hence a Cartesian point 
(x, y )  i s  represented by a complex number r = x + j y .  

Dejinition I :  Let an object $2 be composed by a finite 
set of smooth parame~c curves x ($1 in the Cartesian co- 
ordinate system: 

EQ 1 
let O = (Q,O,) b h e  centroid of all curves (appendix A) 

and lek M lx the maximum Euclidean distance from 0 to 
all curve points: 

EQ2 

ahen a coordinate m s f o m  U for each curve z(t) exisrs 
which represents the object in n normalized polar cmrdi- 
nate system with origin 0. 

EQ3 
U:((O,l) + C )  4 ( ( O , l )  +C) 

Lemma I (Proofin Appendix B): The transformed ob- 
ject U(R) is inva-iant to translations of fl by the offset & 
and invariant to scde changes by a scalar a. A rotation 
about my point 2, by the angle A0 has no effect on R and 
causes a 2r-periodic tnnslalion of 8 by A0 (cyclic shift). 

N.B.: The opemtor U maps curves to curves by a coordi- 
nate msform (U: (Curve)+ [Curve)). I r  docs not map a 
single point from the Cmesian plme to the polar plane. 

DeJnifion 2: Let UlQ) be the UNL t m s f o m t i o n  of 
object , let the pointset! Ix the im~e (rmce) of U(R), i.e. 
rhe image of dl pmrneric curves that compose U(n) l a p  
pendix C). 
Then the magnitudes o f  the 2-D hur ler  transform of l 
the UNL Fourier Fearures (UFF). 

Theorem I :  The UNL Fourier Features m invariant to 
translations, scale changes and rotalions of  the original 
object Q. 

Proof: This is  true following the translation theorem of the 
Fourier l r a n s f m  and Lemma 1. 

Exarnpte of an UNL Transform of a Curve Pattern 

For the lest pattern of fig. 1, the analytic UNL Ems- 
form is  presented. The cdculus of the transformed pattern 
was analytically performed by Mathematics [26]. The 
centroid falls inside the nose. The maximum distance 
from the centroid appears two times at the end of the two 
mtcnna. The three "blobs" in the middle are the trams- 
formed eyes and mouth. The four peaks are rho head and 
the two spikes are the transformed antenna. Cwrespond- 
ing points m labeled wilh the s m e  chmcter in both the 
original and transformed pattern. As an example consider 
point fi The vector from rhe centroid to f has an angle of 
45 degrees (Tt!4) to the horizontal reference axis a d  h a  a 
distance te the centroid of about 758 in relation to the 
maximum disrmce at point o or 6. 



Fig. 2 UNL Transform of the test pallem, 

Comparison UNL Transform - Log-Polar Transrorm 

The differences between the UNL trrrnsfom (CT) and 
the Log-Polar bansform (Complex-Log &ansfom) (L) 
must k explicitly stated because both techniques have 
some approaches in common. 

Both seek a transtation normalization by shifting the 
centroid of the object pattern to the origin of a polar coor- 
dinate system. Both mnp from originatly Cartesinn coor- 
dinates to polar coordinates. 
The fundamental differences however m: 

Applicarion Conrrraints: While U can b applied to 
every pattern composed of curves, L is limited to patterns 
which posses a region. For the test pattern of fig. 1 L is not 
suited. e.g. it could not meaningfulFy be used 10 aansfom 
the antenna 

Subject of Mapping: L maps image points through a 
mathematical function to other image points. A complex 
coordinates is msfomed to In s. The axes of the original 
Ix,y)-pattern change to (hllz11.8) . U is "just" a coordi- 
nnte Itransfom. It does not change the value ofz but nther 
represents it  in another coordinate system. 

Markmatical Operatiom: S cdculares In 2, which 
yields another complex number. U is mahematically an 
identity operation. The value of  z is invariant. 

Scale invariance: U is annlyticdly scale invariant for 
every positive scale factor. The limitations only occur in 
the discrete pixel matrix when the scnle factor becomes 
too big. L is only obviously scale invariant. In [21] the 
problem of strerchin~ is highlighted. Since the scaled co- 
ordinare aZz i s  transformed to In z+ln a [20], the tnns- 
formed paRern not only dislocates its pixels but dso 
distom them. This defect only permi ts  the appllcntion of 
L under moderate scaling conditions. Particular problems 
occur when h e  centroid's coordinates of the pattem fall 
inside the m a  of an object's hole. In this case it becomes 
very hnrd to match the pattern wizh the prototype$ without 
using heuristics. In [20] "useless pixels" are cut and in 
121 ] it is hed to compensate for the stretching with a 
Laplacian film. 

CALCULATING UNL FOURIER FEATURES IN 
PRACTlCE 

In practice the pattern is given as a binmry bitmap. 
without any a priori knowledge about the intrinsic mthe- 
mtical definition of the pattern curves. The pattern is ap- 

proximated by d! linear cune  segments 

r ( l )  = (xl + r ( x 2 - x l ) )  + j ( y l  + ~ ( v ~ - ? I ~ ) E  1~ (0. 1 )  
between two neighboring pixels of the pattem 

z, = x,+j.vl and r2 = x 2 + j y 2 .  
Hence once again an analytical description is avail- 

able. In order to be able to define a line segment a thinning 
o f  the original pattern i s  necessary, e.g. by the algorithm 
in [27]. The centroid of the pattem i s  now the mean of all 
pattem coordinates: 0 = (& ,it) . i = I ... #pixels . 
The pattern is scanned once. I f  a pair of pixels is found the 
line segment is msfonned by EQ3: 

The parameter t is discretiztld into sufficientIy smal t steps 
in the interval (0,l). The only restriction i . ~  th32 no gaps in 
the trmsformed pattern may appear. 

The DC component of the pixel matrix repreqents the 
basic signal energy. This is the Fourier magnitude for both 
polar parameters equal to zero: F(0.O). T h t s  magnitude has 
always the maximum values of all rnngnitudcs. Conse- 
quently we normalize all other rnsgnitudes by dividing 
them by F(O.0). 

The method assumcs an ideal segmentation if the 
source images are non-binary. but so do other weIl estab- 
lished merhods a? weIl. e.g 1-13 Fourier descriptors. On 
the other hand patterns are often a prior; only black and 
white, e.g, printed digits. In this c x e  na segmentalion is 
necessary. See [3 I ]  for an applicarion of  the LlNL u,uls- 
fom to handwritten characters. 

The UNL Fourier Featurrs are sensitive to occtuslons. 
The set of pmmetric functions i s  changed abruprly if 
pans of the whole object are miwing. Consequently the 
centroid and the UNL transfom of the original pxtern 
chnnge complctcEy and the UNL Fourier Features yield 
garbage values. 

EXPERlMENTAL RESULTS 

We present rhe results for a real world pattern c l x s i h  
cation task. A set of objects is  presented to a standard 2-D 
vision system. The digital grey level imges  are segment- 
ed into binary imges. From there the contours of the rrb 
jects are extracted. The contour data, is stored in files 
which are amsferred to a worksation where higher level 
processing i s  performed. 

Hordmbare: An industrial general purpose imaging sys- 
tem is used for kme grabbing and early vision. The 
Magisem2 from Joyce Loebl [28] receives the analogous 
image signal from a conventionat CCD-camcra (Panason- 



ic: M&l WV-150018) and digitizes it to a 6 bit 512x512 
pixel matrix. Tbc vision system performs low !eve1 i m g -  
iag to extract the 1 bit binary shape image. The Magiscan2 
is coatroIled by a PUAT. The binary contours are moved 
to a DECstation 3100 from Digital Equipment running un- 
der U r n .  

Conrour &mion:  Images which failed to be seg- 
mented propzly were purged. c.g. w k n  holes appeared 
where the object has none or parts of the background were 
segmented into the object area. A mixture set of ideal 2-D 
paper sheet, and other 3-D objects was used (fig. 3). The 
camera position was varied fmm an initial distance of 
0.6m with lcm increases, The segmentation was histct 
gram based. After the segmentation, the horimntal chord 
segments were scded by a constant linear factor of 1.088 
in order tony to compensate for the distortion of a general 
purpose TV camera The system calls of the vision system 
were used to extract the boundaries of he objects respec- 
tively of thcir holes. The whole set of images for one class 
was stored in a file and then transferred to the workstation. 

Fig. 3 7hc Benchmark Universe 

Feature and CIasSlficr Model: The original resolution 
of 551 was normally scald down to a smaller tesolurion 
in the workstation environment. The preprocessing steps 
(thinning) were performed and finally the disaele UNL 
Tmsform of the pattern. The resoIution of the polar coor- 
dinate sysrcm was the same as for the Cartesian coordinate 
system. Finally the UNL Fourier Features were calculat- 
ed. 

For each feature a Gaussian probability distribution 
was assumed. Hence the mean and standard deviation for 
each featllre were estimated from the available training 
samples . 

The totaIity oP the samples was alearorily split into 
35% training data and 25% test data The total number of 
samples per claw were about 200. Over the whole feature 
pool a preseIection was done to divide them into ''goodn 
and "bad'". ?his quality l a k l  was based on an average in- 
terclass distance measure using the fo!lowing heuristin: 

EQ4 

where c is the n u m b  of classes and pi and o, are the mean 

and standard deviation for class i. The hewistics is  the av- 
enge interdm distance for a31 possible class pair combi- 
nations. The interclass distance between two classes is 
based on Chebychev's inequality. This formula results in 
a ranking between 0% and 100% for each feature. The 
heuristics makes the simplifying assumption that features 
are mutually independent which for a multivariate distri- 
bution is not true. On the olher hand it allows to give a 
good rule of Lhumb for the potential of one feature to sep- 
arate classes. Thus it is possible to order the features fol- 
lowing this quality criteria. 

For the preselected pool the values: of all feature vee- 
tors were ealcuhted. The feature selection based on mul- 
tivariate analysis of covariance [29] findly determined 
which features were used for classificarion. The feature 
selecrion was initialized with that preselected feature that 
had rhe highesl quality. Then the next feature was select- 
ed. joined to the selected pool and so on. 

The number of selected features was based on a mini- 
ml estimated error rnte using the Ieave-one-out m e t h d  
1301. 

A nmst-neighbor classifier was applied For identifi- 
cation. Euclidean distance measure was used to establish 
an decision making function to determine to which class 
the unknown sample klonged to. No data reduction over 
the whole set of samples was performed. That means that 
an unknown sample compared to each of the known tnin- 
ing samples. 

Experiment: The general purpose classiticntion perfor- 
mance of the UNL Fourier Ratures is tested. The param- 
eters and results are presented in tnble 1. The sarnptes 
were scded from a resolulion af 512 down to 256. The 13 
cIasses were represented by 1928 samples. The pictures 
were taken from 10 different camera positions. The num- 
ber of the preselected features was fixed at 100. From this 
pool 8 features were selected for the universe of objects 
under observation which were used for training and clas- 
sification. The estimated recognition rate was 100%. For 
the 481 test sunpies the apparent recognition rnte was also 
100%. 

It can be observed that the classifier performs wet1 for 
the symmetric objects 5 and 6. Also the very similar ob- 
jech 4,9 and 13 are separated well (they differ only in one 
hole). 

APPENDIX 

A. Cenlroid of afinite set of parametric curves. 
The common cenlroid 0 of an object (t) which i s  com- 

posed by n smooth patamebic curves 
z j ( # ) = x i ( t ) + j v i ( r ) , i = I  ... n is: 

EQ-A I 
n 1 

JZ; 11) 1 1  il ( 4  lldt 

0 = to,.o,, = " I n 0  , 
ll\i;(f)lldt 

i - S  o 

The condition of smoothness i s  n t c e s s q  to derive the 



curve at every point Furthermore it implies that the pat- 
tern is  broken up into severall curves at non continuous 
points. 

B. P m f  ojbmma I .  
Translation: Substitute zi ( t )  by r i  t l )  + Ar and calcu- 

late tire new values for 0. M, taking into account that At 
does not depend on t. Then EQ3 yields invariant values 
for U (ti It) 1 . 

Scaling: Multiply r, ( $1 by the positive real scalar a. 
Analogous case ta baaslation. 

Roralion: Substitute z i  ( r )  by cxp lj$) z: ( r )  where 4 
is an angle by which the pattern i s  rotad about 0. A 
rotation about any point can k split up into a translation 
to 0, the rotation and inverse translation. Calculate the 
new values for 0, M. It can k proved that for the polar 
angle 0 

u n ( B ( z I r ) ) c x p ( j $ ) ) = t a n O ( z ~ r ) + 9 )  which 
is  quivalent to a cyclic shift of the transformed pattern. 

This poiatset is what we normally consider as the 
curve. It can be understodl as an instantiation or muteri- 
dizafion of the curve by variation of its parameter in the 
respective interval (0,1). 
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