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Abstract In computer vision, the interpretation of optical
flow ( motion vector field calculated from images ) and estimation
of motion are important tasks. This study proposes a motion in-
terpretation network which enables optical flow (OF) interpreta-
tion and describes motions on a plane through the use of a neural
network with complex back propagation learning. Furthermore,
an OF normalization network for optical flow normalization is
proposed for the interpretation of diverse flow patterns, such as
real image optical flow. Using test patterns and real image optical
flow, the generalization capacity of proposed network is investi-
gated. And the ability is confirmed experimentally.

1 Introduction

In computer vision, the interpretation of optical flow (1] ( motion
vector field calculated from images ) and estimation of motion are
important tasks [2]. This study proposes a motion interpretation
network which enables optical flow (OF) interpretation and de-
scribes motions on a plane through the use of a neural network
with complex back propagation learning. Furthermore, an OF
normalization network for optical flow normalization is proposed
for the interpretation of diverse flow patterns, such as real image
optical flow.

Methods for estimating motion from optical flow include a
method that obtains the optimum solution by using several flow
vectors to solve equations [3], [4], [5]. However, this method is
time consuming and prone to noise, and solutions are for actual
images cannot easily be obtained.

Neural networks are frequently utilized in pattern translation
and are far less affected by noise [6], [7]. The calculation time
required after learning is short, and the network are suitable for
interpretation of motion. In addition, the networks proposed in
this paper utilize complex BP and thus can naturally accommo-
date optical flow, a two-dimensional vector, as a complex number.

2 Complex Back Propagation Learn-
ing

Complex back propagation learning has been developed by Nitta
and Furuya [8], who expanded the weight of connection and the
threshold of each unit in conventional neural networks to complex
numbers. It is shown as an effective method for graphic conver-
s10N0.

3 Motion Interpretation Network

Figure 1 shows the architecture of the motion interpretation net-
work proposed in this study. In the flow vectors to be fed to the
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neural network, it is assumed that motion develops all over the
frame, centering around the center of the frame.

Figure 1 Motion interpretation network

+ Input layer

Units corresponding to each vector of optical flow are ar-
ranged two dimensionally. Inputs to each unit are of com-
plex numbers corresponding to motion vectors of the inputs.
Units of 25 (= 5 x 5) was used in the computer simulation.

Output layer

Two complex output units corresponding to the displacement
components parallel to the frame (dz, dy), expansion and
contraction component dz and rotational component parallel
to the frame w, (dz, w,) are available.

Hidden layer

There is only one hidden layer, and 16 units are used.

4 Motion Interpretation Networks
with Normalization Capacity

Motion interpretation networks interpret the optical flow in an
entire frame. However, in reality, optical flow frequently cannot be
obtained for the entire frame. Hence, OF normalization networks
utilize the graphic conversion networks proposed by Nitta and
Furuya to normalize sparce optical flow, partially defined optical
flow and optical flow of arbitrary size and shape to n x n.

In OF normalization networks, a complex function that trans-
lates a point on a two-dimensional plane to another point can
be estimated by supplying a point before translation and a point
after translation as learning data.

By having the network learn the starting point of each vector
of optical flow as a point before conversion and the terminal point
as a point after conversion, it is possible to have the neural net-
work estimate a function f, to describe the optical flow. Here the
network is expected to output a value of the complex function
f, at all locations on the frame. By providing points aligned in
an n x n lattice format to this network as starting points, and
obtaining the final points from each starting point, a normalized
n x n optical flow can be created. Figure 2 shows the architecture
of OF normalization network.



(X)) — (') )

Function
Figure 2 OF normalization network

5 Experimental

A test pattern consisting of 25 (= 5 % §) vectors was provided to a
motion interpretation network which had learned basic motions,
s0 that the generalization capacity of the motion interpretation
network could be studied. The teacher pattern and test pattern
provided motion components, and these were arranged so that
motion developed all over the frame, centering around the center
of the frame.

The number of types of tercher patterns used was 25, and these
patterns contained a single motion component, Then 47 types of
test patterns were provided.

Table 1 shows the motion vectors of teacher pattern supplied
and Figure 3 shows an example of teacher pattern. A motion
vector of test pattern and motion interpretation network output
corresponding to the pattern are given in Tables 2 a) and 2 b),
respectively. Patterns 1 to 24 are patterns for investigating gen-
eralization capacity with respect to unknown speeds; patterns 25
to 35 are patterns for investigating the generalization capacity for
a combination of multiple numbers.
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Figure 3 Exanples of teacher patterns

The results indicate that although ununiformity was present,
the mean square error was 0.0016 on the average, with a maxi-
mum of about 0.055. Motion interpretation networks that have
learned basic mation are thought to have the capacity to gener-
alize unknown patterns,

Next, examples of experinental results on normalization capac-
ity are shown. In the experiments, patterns in which optical flow
was not obtained for the entire frame (test patterns 36-47) were
created, then normalized by the OF normalization network and
interpreted by the motion interpretation network. Figure 5 shows
an input aptical flow, the same optical flow after normalization,
and the results of interpretation for each of them. In Figure 5,
an input optical flow of test pattern is shown above, its normal-
ized pattern is shown below, resuls of interpretation and provided
motion vector are indicated as (dz, dy)(dz, w,) at the bottom.

Figure 6 shows an input optical flow with aditive noise(e? =
0.00067, 0.0053 and burst noise), the same optical flow after nor-
malization, and the results of interpretation for each of them.
This result indicates the interpretation network and the normal-
ization network works well even under the additive noise.

Figure 7(a) shows the first frame of real image sequence(128
pixels x 128 pixels) used in this experiment and the abject moves
ahout 2.5 pixels to the left. Figure 7(b) shows a part of opti-
cal flow (10 pixels x 10 pixels) caluculated from the real image
sequence. Figure B shows the pattern after normarization. The
result of this experiment shows the effectiveness of our networks.
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Table 1 Motion vector of teacher patterns

dr dy dz [
| 1 0 0 0
2 0 | 0 0
3 -1 0 0 0
4 0 -1 1] (1]
5 | | 0 0
[ -1 | 0 0
7 | -1 0 0
B -1 -1 0 ]
9 0 0 1 0
10 0 0 -1 0
11 0 ] 0 |
12 0 0 0 -l
13 0.5 0 0 0
14 0 0.5 0 0
15 0.5 0 0 0
16 1] 0.5 0 0
17 0.5 0.5 0 0
18 0.5 0.5 ] 0
19 0.5 0.5 0 0
20 0.5 05 0 0
21 0 0 0.5 o
22 0 0 0.5 0
23 ] 1] 0 0.5
24 0 0 0 0.5
25 0 1] 0 0

6 Conclusions

Through the use of the method proposed in this paper, it was pos-
sible to interpret the optical flow and obtain motion parameters
on a plane from optical flow. Equipping the network with normal-
ization capacity further ennbled us to obtain motion eomponents
from various aptical flows. In future studies, we shall attempt to
develop the present method to enable extraction of 3D motion.
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test pattern 25 test pattern 30 test pattern 31
motion veciorof testpattem o = 5 gy = 0,5 dr=05dy=05ax=05 dr=0.33d:=0.33 ar = 033
output of nerwork dx = 0.526 dz = 0,552 dx=0.525dy = 0520 ax =0.520  dv=0.367 dz = 0.388 ar =0.394
Figure 4 Examples of test patierns
Table 2 Motion vector of test pattern and output of network
a) motion vector of test pattern b) output of network ¢) MSE
dx dy dz s dy dy dr [y

1 0.75 0 0 0 0.7568 0.0046 0.0096 0.0031 (LOOO0B45Y
2 0 0.75 0 0 0.0065 0.7546 0.0106 00016 000008917
3 -0.75 0 0 0 -0, 7853 -0,0037 0,0034 00191 0.0008 1808
4 0 -0.75 0 0 0.0084 -0, 7851 0.0265 0.0295 0.00143754
3 0.75 0.75 0 0 0.7572 0.7529 0.0077 -0.0104 0.0001 1385
6 -0.75 075 0 0 -0.7806 0. 7608 0.0046 00118 0.00060670
7 0,75 .75 0 0 0.7745 -0,7818 0.0108 10334 000142185
8 075 075 0 0 07888  -0.7964 00114 -0.0363 0.00255303
9 1} 0 075 0 -0.0046 0.0039 07853 00118 0.00070736
1 0 0 0.75 0 -0.0084 -0,0125 -0.7810 00071 0.00061911
11 0 0 0 0.75 00074 00017 00114 0. 7668 000023493
12 0 ] V] .75 0.0000 0.0016 0.0174 -0, 7857 000078991
13 0.25 0 0 (1] 0.2875 0.0005 00156 00014 00082591
14 0 0.25 0 0 0.0016 (L2868 0.0123 -0.0008 0.00075437
15 0.25 0 0 0 02884  -0.0023 00114  -0.0085 000084103
16 0 -0.25 0 0 00008 -0.2894 00194 -0.0106 0.00102086
i) 0.25 0.25 0 0 0.2892 0.2875 0.0130 0.0010 0.00155645
18 -0.25 0.25 0 0 -0.2867 0.2865 0.0085 L0048 0.00138722
19 0.25 025 0 0 0.2875 -0.2874 00193 -0.0077 0.00161840
20 -0.25 028 ] 0 -0.2891 -0.2915 0.0158 00155 (LN T8T048
21 0 0 0.25 0 0.0013 0.0013 0.3169 -0.0054 0.00225408
22 0 0 0.25 V] 00007 00038 02904 00036 000083003
23 0 0 0 0,25 -0.0009 -0.0012 0.0138 0.2947 0.00109539
24 0 0 0 -0.25 -0,0008 -0.0008 0066  -0.3041 0.00160191
25 0.5 0.5 0.5261 -0.0005 .5519 0.0144 000179122
6 0.5 0.5 -0.0011 0.5508 0.5695 -0,0200 0.00390605
27 0ns 05 0.5 0.5279 0.5450 0.5414 00053 0.00227273
28 0s 0.5 0.5230 0.0076 0.0291 0.5452 000173831
29 0s 0.5 0.0012 0.51R8 00029 0.5363 0LO0OB4049
30 0.5 0.5 0.5 0.5247 0.5195 0.0115 0.5204 000076038
31| 033313 0.33333 0.33333 0.3668  -0.0053 0.3881 0.3943 0.00393222
32 0313333 033333 0.33333 0.0083 0.3697 0.3876 0.3762 0.00308692
33| 033333 033333 033333 03330 0.36%96 0.3634 0.3779 0.3771 0.00306049
34 1 0.5 09119 (.5442 0,003 00108 000492519
i5 0.5 1 0.5507 0.9094 0.0110 -0.0096 0.00549601

maximm 0.00549601
average 000162718
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Figure 6 Experimental results with noise added inputs
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Figure 7 Real image and optical flow caluculated from real image sequence
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Figure 8 Experimental results with real image sequence
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