MvA 92

IAPR Warkshop on Machine Vision Applications Dec. 7-9,1992, Tokyo

AN EFFICIENT PARALLEL IMPLEMENTATION OF

THE LAPLACIAN PYRAMID ALGORITHM
Min Xue. Abdelhamid Hachicha, and Alain Mérigot
ESIGETEL.

1, rue du port de Valvins, 77215 Avon Cedex, France
IEF, Université Paris-Sud,

Bat. 220, 91405 Orsay Cedex, France

ABSTRACT

The Laplacian pyramid coding is a useful image proc-
essing tool. Its running time with a sequential machine is
O(n) where n*n is the size of the original image. This pa-
per describes a parallel implementation of this algorithm
on SIMD machines like pyramids and meshes. In these
machines, the concerned data and associated operations
are allocated to elementary processors, and a well-
organized scheduling is used 1o allow an evenly distrib-
uted computation executed in parallel. With a properly
sized pyramid machine the running time is reduced to
O(H) where H is the pyramid's height. When the machine
is smaller than the Laplacian pyramid, the image is di-
vided into segmenis and the computation is carried out
segment by segment. However, a problem on the periphery
of each segment is encountered. To remedy this problem,
two methods are proposed. The best one allows a running
rime of ontind + log m) where m*m is the size of the
pyramid machine' s base.

L INTRODUCTION

Our current project, carried out jointly by ESIGETEL
and the Université Paris-Sud, concerns the implementation
of image coding algorithms[6] with SPHINX[5], a multi-
SIMD bin-pyramid machine designed by the Université
Paris-Sud in France. This paper describes an efficient par-
allel implementation of the Laplacian pyramid algo-
rithm([2]. This algorithm, presented by P. J. Burt and E. H.
Adelson several years ago, is used for image compression,
progressive image transmission, and other applications in
image processing domain,

The reason of using a massively parallel machine is to
reduce the running time of computation. In this paper. we
are particularly interested in using a pyramid machine
such as SPHINX and PAPIA[3], and in comparing them
with meshes like MPP[1].

In the following sections, after a brief presentation of
the Laplacian pyramid coding. we present in detail its par-
allel implementation followed by a performance evalu-
ation,

2. LAPLACIAN PYRAMID CODING

The Laplacian pyramid coding consists of two main
steps: the generation of a Gaussian pyramid and that of a
Laplacian pyramid. Each layer of the Gaussian pyramid is
a low-pass filtered image of its lower layer, except for the
base which is the original image of size n*n. The differ-
ence between one layer of the Gaussian pyramid and the

491

expanded image obtained from the layer immediately
above gives the corresponding layer of the Laplacian pyra-
mid. The expanded images form a pyramid called ex-
panded Gaussian pyramid.

Gaussian Pyramid

The Gaussian pyramid is the sequence of the reduced
low-pass filtered images (g, |=(gy. g. ... 84 ;| generated
from g, (the original image) by a REDUCE function:

80yi) = E Z_ W(P.Q)g,(2i4p. 2j+q) 22
p=-2g=2

where H is the height of the pyramid and w() is the
weighting function.

Expanded Gaussian Pyramid

The expanded Gaussian pyramid is the sequence of the
expanded images (g'y| generated from {g | by a EX-
PAND function:

g',=EXPAND(g,) (2.3)

gy =4 2 X wipag (D202 24

where only the terms with (i-p) and (j-q) all even are con-
sidered.

Laplacian P id
The Laplacian pyramid (Ly | is just the difference of
(g,) and (g’) with Ly =gy o

=g -g' ,0=<k<H-1. (2.5)
B -By

3. PARALLEL IMPLEMENTATION

In our implementation, a multi-SIMD quad-pyramid
computer consists of "log,m + 1" layers of mesh-
connected processors. where m*m is the size of the base
mesh. Between meshes, there are vertical connections
which form a quad-tree with the connected processors. All
communication links are bi-directional and used to transfer
data between processors. Inside of a processor, there are a
local memory and a processing unit that can perform stan-
dard arithmetic and logic operations. With one controller
per layer, all processors of a layer execute the same in-
structions in parallel. This pyramid scheme can be simu-
lated on a mesh connected computer. The layer k is
formed by keeping one out of 2 w2k processors in the
mesh. The communications on the layer k with either the

nearest neighbors or the parent take 2k elementary com-
munication steps. Both pyramid and mesh connected com-
puters here are bit serial machines.

On bit serial machines, a multiplication of two b-bit
variables takes a time of bxb elementary steps while a
communication of a b-bit variable takes only b elementary
steps. An efficient implementation will accordingly mini-
mize the number of multiplications.

In this section, two cases are considered: Small images
or large images compared with the pyramid machine's
base. Parallel implementation and performance evalu-
ations are presented for these two cases, Improvements
obtained by exploiting the symmetry property of the
Gaussian weighting function are also discussed.

3.1 Implementation for Small Images

Small image means that the pyramid machine has at
least the same size as the Laplacian pyramid of the image.
A 5-by-5 window is used for the Gaussian-like weighting
function w(). The implementation is similar for other sizes
of windows, We consider here the case of general weight-
ing function without coefficient symmetries. As the win-
dow consists of 25 possibly different coefficients, a naive
implementation would lead o a 25 multiplications and
communications. As multiplication is the most expansive
operation, we will show that this number can be largely re-
duced by performing several operations in parallel,

Construction of the Gaussian pyramid (g, |

As we will see later, the implementation will be casier,
if a 6-by-6 window is used. However a 6-by-6 window can
be defined without changing the REDUCE function, as
{w(pq)}[2,43)[-2,43] where: wip.q)=0, for p=3. or q=3;
and w(p.q) remains the same as in the 5-by-5 window for
other values of p and q. The formula 2.2 become:

5 -3
By (1)) =P§ ;Z.' w(p.q)g, (2i+p. 2j+q). (3.1)
Now, let’s put g, (the original image) on the base of the
pyramid machine with one pixel per processor. Assuming
g already computed and stored on the layer k as g, on the
layer O, the problem become: on the layer k+1, for cach
pixel (i,j), how to compute g, _, and o store the result in
processor (i,j).

If we split the image in 2-by-2 blocks, with the previous
6-hy-6 window, every block will have 9 different contribu-
tions(see Fig. 3.1). The 6-by-6 window is divided into 9
blocks as shown in Tab. 3.1, If the window center w(0,0)
is put on the processor (2i.2j) of the layer k, as shown in
Fig. 3.1, we can make a local sum in each block, called
I_sum(b) where b is the index of block. For example:

| . |
I_sum(1) = Ea Eﬂw(-2+::.-2+q)gk('.’.[i- 1+p. 2G-1+9) (3.2)

We have: g, ()= 2 1_sum(b) (3.3)
For the pixel (i.j). the computation is quite simple. Fig. 3.1
illustrates a 3-stage process: Stage 1) on the layer k, each
processor multiples its g () with the corresponding w().
then sends the result to its father on the layer k+1. Stage 2)
on the layer k, we have the local sums I_sum() distributed

492

b=1
w(-2,-2) w(-2,-1)
wi-1,-2) wi-1.-1)

b=2
w(-2, 0) w(-2, 1)
w(-1.0) w(-1. 1)

b=3
wi(-2,2) w(-2, 3)
w(-1,2) w(-1,3)

b=4
w(0,-2) w(0,-1)
w(1,-2) w(1,-1)

b=5
w(0,0)w(0, 1)
w(l,Oyw(1, 1)

b=6
w(0,2)w(0,3)
w1, 2)w(1.3)

b=7
w(2.-2) w(2.-1)
w(3,-2) w(3,-1)

h=8§
wi2,00w(2, 1)
w3 0w(3 1)

b=9
w(2,2)w(2,3)
wi3.2)w(3,3)

Tab. 3.1 The Gaussian weighting function w()

in 9 processors. By using horizontal communications, we
can easily compute the intermediate sums:

3
i_sum(r)= b):".] I_sum(b+3r), r=0..2 (3.4)
Stage 3) the global sum is obtain in a similar way:
By (i) = & 1_sum(). (3.5)

For parallel computation, the layer k is divided into 2-
by-2 blocks. The 4 processors in a block have the same fa-
ther on the layer above, We notice that a pixel can only be
at one of the 4 positions shown in Fig. 3.1, i.e. a, b, ¢, and
d, and the block containing the pixel can be one of the 9
possible blocks in the 6-by-6 window, ie. 1,2, ..., 9. de-
pending on the contributions of the pixel to compute
£4.,10). For a given pixel (i,j) on the layer k+1, the compu-
tation of its gy, ,() is carried out by using the contributions
from the processor (2i,2)) on the layer below, and its 35
nearest neighbors, So, on the layer k, each block with its
4 pixels can contribute 9 local sums |_sum() to its father.
On the layer k+1, in each processor only the 1_sum(5) is

layer k+1

layer k

-] / ‘

i //2/r3 w080

2+l / / 6
A

Stage 1) Computation of local sums

layer k+1

Stage 3) Computation
of global sum, g, . ()

Fig. 3.1 Implementation of the function REDUCE
(Computation for the pixel (i,j))

Stage 2) Computation
of intermediate sums

for the computation of its own g ;0. others are for its
neighbors. For example, |_sum(l) is for the south-cast
neighbor (see Fig. 3.1). By exchanging |_sum() one by
one, i_sum() can be also computed in parallel. The same
method is used for computing the global sum g, (). Now,
we have a 3-stage parallel process: Stage 1) each block on
the layer k, computes in cooperation with its father,
1_sum(b) where b = 1.9, one bye one. Stage 2) each proc-
essor on the layer k+1, by exchanging |_sum() with its cast
and west neighbors, computes i_sum(r) where r = ()..2, one
by one. Stage 3) each processor on the layer k+1, by ex-
changing i_sum() with its south and north neighbors, com-
putes its own g, ().

In this parallel implementation, there are "9*(1 mul + 1
ve + | 4-add” in the stage 1, "3%(2 hc + 2 add)" in the
stage 2, and "2 he + 2 add” in the stage 3, where "add",
“deadd”, "mul”, "hc" and "ve" stand for respectively addi-
tion, 4-operand addition, multiplication, horizontal and
vertical communications. The running time is independent
of the layer's size. On a mesh connected computer due o
the increasing horizontal or vertical communication time,
the running time on the layer k is under the form of
"a+b2%", where "a" and "b" represent respectively compu-
tation time and communication steps.

Construction of the Expanded Gaussian pyramid [g',]

In the formula 2.4, only the terms with (i-p) and (j-q) all
even are considered. Depending on the parity of i and j,
the formula 2.4 become: (i,j all even)

1 1
0 g i) =42 X w g, (/2+p. J2+9)

(3.6)
p=-1q=-1
1 1
b) g+ = 45 E‘; W (PQBy, (24, i2+q) (3.7
|]
) gy (i+lj) = 4{2-; q;l PQ)g(i24p. jR2+q) (3.8)

1
) gy (i+1j+) = 42 Z WPy (24D, §2+0) (3.9)

where w_, wy. w_. and w, arc defined in Tab. 3.2. In this
table. x (=a.b.c.d) is the position index of the coefficient in
a block as shown in Fig. 3.1,

b=l,w (-1,-1)= [b=2, w (-1.0) =| b=3, w,(-1.)=
w(2,2) Ol w(2,00w(2, 1) w(2,-2)w(2-1)

0 0 0] 0
=4, w(0,-1) = | B=5, W, (0, 0) =| B=6, W (0, D)=
w(0,2) 0 [w(0,0)w(0,)] w(0,-2) w(0,-1)
w(1,2) O |wllLOyw(LD |w(l-2)w(l,-1)
b=7. w (1.-D)= | b=8, w (L.O)=] b=9, w (L.)=
w(-2.2) 0 | w(-2,0) w(-2, 1) | w(-2,-2) w(-2,-1)
wi-1,2) 0 [wi-1. 0) wi-1. 1) | w(-1.-2) w(-1.-1)

Tab. 3.2 The function w () with x=a. b, ¢, and d

Assuming i and j all even , let’s put the center of the
window w, (), i.e. w (0,0), on the processor (i,j) on the
layer k. as shown in Fig. 3.2. If each processor on the layer
k+1 sends its g, , 0 10 its 4 children, after the formula 3.6,
g’ (i,j) is just the sum of g, ., 0 stored in the processors at

493

position "a" in the blocks from "1" 10 "9" multiplied by the
corresponding w (). The process remains the same for
g k(l.]+|]l g k{ld-lJ) and g’ (i+1j+1). So, the parallel
computation can be similar as for REDUCE, except that
the data movement here is from upper layer to lower layer.
and the horizontal communications are of 2 steps, i.c. the
distance between two processors who exchange data is 2.
A similar 3-stage process is used. Fig. 3.2 illustrates the
computation of g*,() for the pixel (i.j). In the present paral-
lel implementation, there are "1 ve + 9% 1 mul" in the stage
1, "3%(4 hc + 2 add)" in the stage 2, and "4 hc + 2 add + |
mul" in the stage 3. The running time is also independent
of the layer's size. On a mesh connected computer, the
running time remains the same form as for REDUCE,

layer k+1

Stage 1) Computation of w, (g, ,0)

i+l

// AN

Stage 2) Computation of intermediate sums

layer k

layer k

| / /f' /
o LT, B
A

Stage 3) Computation of global sum. g', ()

Fig. 3.2 Implementation of the function EXPAND
(Computation for the pixel (i,j))

. lonof I . - 1

A subtraction in each processor on the layer k is suffi-
cient to obtain L= g, - g',. The munning time remains in-
dependent of the layer's size. Finally, the present parallel
implementation reduces the overall running time of the
Laplacian pyramid algorithm to O(log n) or O(H) where H
is the pyramid’s height and gcncral[y less than or equal 10
(logyn + 1), and to O(n) or 02", if a mesh connected
computer is used.

3.2 Exploitation of the Weighting Function’s Symmetry

In general, the Gaussian weighting functions are separa-
ble and symmetric that lead to the following properties:

w(p.q) = w(xp.+q), and w(p.q) = w(q.p).

Depending on the position of a pixel within the mesh, the
different coefficients for computing the pixel’s contribu-
tions are:

for (21,2j), w(0,0), w(0, 2) and w(2,2);
for (2i+1.2)) or (2i,2j+1), w(0,1) and w(1,2);
for (2i+1.2j+1), w(l.1).

So, the maximum number of multiplications for a pixel is
reduced from 9 to 3, both in REDUCE and EXPAND. In
the previous 3-stage process, the number of multiplica-
tions in stage | is then minimized to 3. As the multiplica-
tion is the most expansive operation, the total running time
is considerably reduced in this case.

3.3 Implementation for Large Images

When the pyramid machine is smaller than the Lapla-
cian pyramid, we should divide the image into segments
and make the computation segment by segment. However,
we encounter a problem on the periphery of each segment.
Indeed, the computation on the periphery of a segments
needs generally the contributions from pixels of other seg-
ments nearby, To remedy this problem, we propose two
sulutions.

In the first solution, we use the two lowest levels of the
pyramid machine to compute each layer of the Laplacian
pyramid, except the layers whose size is smaller than
m*m. For these layers of small size, the computation can
be done by the method presented in the subsection 3.1. For
the construction of the Gaussian pyramid (g,), we divide
8y, (the image to be generated) into m *m,_ segments and
distribute g, on the base of the machine so that cach seg-
ment of gy ., can be computed in one pass with the parallel
method presented in the subsection 3.1. The m *m_ seg-
ments of g, ., once generated, will be redistributed on the
base for the computation of g, ». To simplify the redistri-
bution and reduce the running time, m, should be under
the form of 2¥ where k is an integer and as bigger as possi-
ble. With a 5-by-5 weighting window, the optimal value of
m is m/4. According to the evaluation in the subsection
3.1. the running time for generating a scgment is inde-
pendent of the segment’s size. However, the redistribution
of a segment to the base of the machine needs a running
time of O(m) due to the horizontal communications. So,
for the layer k, the running time is 2gmpm-liunal (0]
[(*n)/2° 25 *m/[(m/)*m/4)] or 2*+m*m). The
method is similar for the expanded Gaussian pyramid
(g'y). Finally, the munirag time for the Laplacian pyra-
mid’s construction is O(n“/m + log m). "log m" is for the
layers whose size is smaller than m*m.

The second solution consists of simulating a big pyra-
mid machine on a small one. Each processor on the base
of the machine simulates a pyramid machine whose base's
size is (n/m)*(n/m). The pyramid machine and the simu-
lated ones form a pyramid of "logyn + 1" levels. We use
the parallel computation presented in the subsection 3.1 on
this simulated pyramid machine. For the layer k, the run-
ning time is proportional to [(n*n)/2%*2%)//(m*m) or
(n¥/m?)2%*. For the construction of the whole Laplacian

494

pyramid, the running time is O(nzfmz-rlng m). This solu-
tion is more efficient than the first one,

3.4 Simulated Time Results

A quad-pyramid machine was used for the parallel im-
plementation presented before. The method is still valid
for a bin-pyramid machine like SPHINX. As the SPHINX
prototype was not yet ready, the implementation was car-
ried out on a SPHINX simulator using *Lisp (a parallel
programming language used by the Connection Ma-
chine[4]). Tab. 3.3 gives some results of the running time
in function of the image's size and the machine's size. All
results are based on the following characteristics of
SPHINX: 16 MHz clock and 300 ns for | bit serial instruc-
tion. The weighting function w() here is symmetric.

n m H wi() g.L, running time

(layers) (bits) (bits) (ms)

512 512 5 8 8 1.2
16 24

512 256 5 8 8 1.9
16 38

512 128 5 8 8 4.5
16 9.0

512 64 5 8 8 15.7
16 il4

Tab. 3.3 Some simulated time results

4. CONCLUSION

We have presented a parallel implementation of the
Laplacian pyramid coding on SIMD computers, Thanks to
a specific scheduling of data manipulation, the number of
operations is minimized. The overall running time is re-
duced to O(log n) on a pyramid computer and to O(n)
when the pyramid structure is simulated on a mesh, The
case of large images has also been discussed. The best one
of the two zprn!xm:d solutions gives an overall running
time of O(n“/m~+log m).

REFERENCES

[1] K. E. Batcher, "Design of a massively parallel proces-
sor," IEEE Trans. Computer. Vol. 29, No. 9, pp. 836-840,
Sept. 1980.

[2] P.). Burt and E. H. Adelson, "The Laplacian pyramid
as a compact image code." IEEE Trans. Commun., Vol.
31, No. 4, pp. 532-540, Apr. 1983,

13] V. Cantoni, M. Ferretti, S. Levialdi, and R. Stefanelli,
"PAPIA: Pyramidal Architecture for Parallel Image Ana-
lysis,” Proc. 7th Symposium on Computer Arithmetic, Ur-
bana IL, USA, pp. 237-242, 1985,

[4] W. D. Hillis, "The Connection Machine," The MIT
Press, 1985,

[5] A. Mérigot, B. Zavidovique, and F. Devos, "SPHINX,
a pyramidal approach to parallel processing,” Proc. Comp.
Arch. for Pal. Anal. and Image Database Management, pp.
107-111, IEEE Computer Society Press, 1985.

[6] A. N. Netravali and B. G. Haskell, "Digital pictures:
representation and compression,” Plenum Press, 1988,

