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ABSTRACT

The authors propose an algorithm for detection of
three-dimensional boundaries in noisy images based on
higher-order polynomial surface fitting and directional
smoothing. Fitting a polynomial to the local intensities
gives the intensity hypersurface. An isointensity surface
is derived from the hyperplane and directional smooth-
ing is defined as smoothing along this isointensity sur-
face. The developed boundary detection algorithm ex-
ploits this smoothing technique and gives good edge
preservation, localization and noise reduction. Experi-
ments were performed on synthetic noisy data sets. Re-
sults indicate that the algorithm is superior to other
edge-preserving smoothing approaches reported previ-
ously.

1. INTRODUCTION

Boundary detection algorithms applied to data
which is severely contaminated by noise, e.g. many
medical images, need a pre-smoothing step. Classical
smoothing has a tendency to blur edges, so edge-
preserving smoothing techniques have attracted many
investigators [1, 2]. The basic idea behind most of the
non-linear adaptive edge-preserving filters is to carry
out smoothing using pixels belonging to the same ho-
mogeneous area [2]. A similar idea prompted by the
template matching method [3] is described in [4]. By es-
timating the orientation of local intensity planes,
smoothing along the plane but not across was applied.
Good results could be obtained matching small neigh-
borhoods and when surface curvature was low. Using
larger neighborhoods for greater smoothing, or when
boundary curvature was high, edges became degraded.
This paper extends the idea of surface match and pro-
poses a new method for edge preserving smoothing and
3D boundary detection based on higher-order surface
fitting and directional smoothing. The main point is that
smoothing is carried out along an estimated curved sur-
face. The principle of directional smoothing is ex-
plained in section 2. Section 3 discusses the influence
of noise on directional smoothing. Section 4 presents a
boundary detection algorithm based on higher-order
surface fitting and directional smoothing. Section 5 de-

453

scribes an experiment for evaluating this technique and
also contains a comparison with two other well-known
edge preserving smoothing techniques. Section 6 gives
experimental results and a discussion.

2. SURFACE FITTING AND
DIRECTIONAL SMOOTHING

Surface fitting is first described in two dimensions.
Suppose we have digitized image intensities in a sym-
metric neighborhood

! (x.y),

where

x € [-xc.x(,].y € [—}'o-yo]-

and a step or ramp edge passes through this area. It is
assumed that the gray level structure of I'(x,y) can be
modelled by a hypersurface denoted by a polynomial

Ty = Y ayxy (1)
Osiyjsm
where m can be 1, 2, 3, ... , M. This model surface is
fitted to the local intensities in least squares sense [5].
Suppose that at the center of this area, the value of the
fiing polynomial is I, i.e. 1(0,0) = I, then (1) can be
written as

Ix,y) = Iy +1,(x,), 2)
where
I(x,y) = E “ij-"-i)"- 3)
Isitjsm
Using the boundary condition
Ix,y) = I, (4)
gives
Lxy) = ) ajxdy =0 (5)

Isi+jsm

This means that the curved line defined by (5)
passes through the neighborhood center pixel and has
the property that pixels on this line have the same in-
tensity value as the center pixel, in other words a
model-based isointensity line passing through the cen-
ter pixel. This can be geometrically represented as in
Fig.1. Ideally, if the model fits the intensity value well,
this line should overlap the real edge when the center



Fig. 1. x-y-1 space representation of directional smoothing.

(a) Local intensity I' (x,y).

(b) Fitting surface I(x,y) and the plane Iy = 1(0,0) which have an intersection line 1,(x,y) = 0. The projection of
this line on the x-y plane is an isointensity line.

(c) Real edge (solid line) and isointensity line (dashed line) in the x-y plane. " +' denotes pixels located on the
isointensity line. Smoothing is carried out with these pixels.

pixel lies on the real edge, and is otherwise 'parallel’ to
the real edge. The amount of ’parallellism’ depends on
how well the model used fits the real data.

If the noise added to all of the neighborhood pixels
has a normal distribution, then noise added on pixels
located on the isointensity line is also normally distrib-
uted with zero mean. An average (or weighted average)
of neighborhood pixel values should therefore recover
the original value of the homogeneous area.

The extension of this principle to 3D case is
straightforward. Consider the local image intensities

I(x,y,2),

where
x € [-xpx).y € [-vo3)- 2 € [~207]

These data are modelled by the hypersurface polyno-
mial

I(x,y,z) = Z ajjx xiyzk, (6)
The equation e
Ly = Y epxyA=0 O
Isitj+k=m

defines an isointensity surface. Directional smoothing
is carried out using an average value of pixels located
on this surface.

3. INFLUENCE OF NOISE

It should be noted that the noise itself influences
surface fitting, and hence the trajectory of the isointen-
sity surface. If the noise is excessive, the trajectory of
the surface may go across the boundary causing edge
blurring instead of being parallel to the boundary. This
problem can be reduced both by using larger neighbor-
hoods for surface fit and lower order fitting which is
less sensitive to noise. Linear fitting, the lowest order
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fitting, is relatively resistant to noise but causes blur-
ring if the boundary curvature is high. So when there is
a lot of noise, it is reccommended to carry out a linear fit
first using a relatively large neighborhood in order to
get a stable plane orientation. Then smoothing is ap-
plied using only pixels in a small segment near the cen-
ter of the isoplane to reduce the possible blurring
caused by smoothing along a large plane. The next step
involves higher order surface fitting using the plane-
smoothed data to extract the isointensity surface.
Smoothing is now carried out along this curved surface
using the original data. The initial linear fit and
smoothing is used only as a preprocessing step to re-
duce the effect of noise before higher order fitting is
applied.

4. 3D BOUNDARY DETECTION

An algorithm for 3D boundary detection is pre-
sented below. It is based on directional smoothing as
described in Section 2 and the noise considerations pre-
sented in Section 3. There are three points to note about
the algorithm. First, Gaussian filters are used in all the
directional smoothing operations. Second, directional
smoothing is only applied to pixels in regions where a
possible edge is detected; otherwise standard isotropic
smoothing is applied both to reduce computing time
and also to get a better result. Third, a gradient thresh-
old is used to determine if a particular pixel belongs to
an edge region or not. This threshold is not used di-
rectly for edge detection and therefore can be estimated
by a simple calculation using a threshold determined
from the statistics of the gradient image.

The boundary detection algorithm is

(1) For each pixel, apply hyperplane fitting in the
neighborhood. If the slope (or gradient) value is
higher than the automatically preset threshold, the
pixel is assumed to belong to an edge region and di-
rectional smoothing is applied, otherwise ordinary



isotropic smoothing is applied.

(2) Use data generated from step 1 for carrying out
quadratic or cubic hypersurface fitting for edge pix-
els only. Then apply directional smoothing using
the original data, i.e. the data before step 1,

(3) Detect the boundary by searching for zero-crossing
points of the second directional derivatives of the
fitting surface with pixels extracted by step 2.

(4) Apply a boundary thinning procedure.

5. EXPERIMENT

The presented boundary detection algorithm was
applied to a synthetic 128x128x25 image which had
step edge boundaries with high curvature, corners and
twisted surfaces as shown in Fig.2. Gaussian noise
from SNR 6db to Odb were added. The neighborhood
size used was 5x5x5, plane pre-smoothing size was
3x3, order of surface fit was 3, i.e. cubic.

Fig. 2. Test image boundary.

For comparison, two published 2D edge-preserving
smoothing techniques were used. These were SNN
(Symmetric Nearest Neighborhood) [6], which is an
improved version of the well known KNN filter [7],
and MAXH (MAXimum Homogeneity) [8]. In our ex-
periment these techniques were extended to 3D and re-
placed directional smoothing in the given boundary de-
tecting algorithm. The automatic threshold estimation
was replaced by manually threshold setting to get the
best result,

The detected edges were quantitatively evaluated
using the first four criteria below. The fifth criterion
was used to evaluate the image error after smoothing.

COVERAGE — Percentage of the ideal edge covered
by detected edge.(0-100%)

MATCH — Percentage of the detected edge that match
the ideal edge.(0-100%)

MSD — Mean square distance between the detected
pixels and their corresponding nearest ideal edge pix-
els. (in pixel unit)

SHAPE — A local edge coherence score as suggested
by Kitchen and Rosenfeld in [9], with the parameter r =
0.8. (0.0-1.0)

RMS — Residual mean square error at edge region af-
ter smoothing.

6. RESULTS AND DISCUSSIONS

The edge preserving, localization and noise reduc-
tion performance of the boundary detection algorithm
with different smoothing approaches is reflected in the
four criteria COVERAGE, MATCH, MSD and
SHAPE. RMS reflects the edge-preserving quality to
some degree.

By comparing the results shown in Fig.3, it can be
seen that directional smoothing performs better than
SNN and MAXH in terms of all four boundary evalu-
ation criteria. The relatively smaller slopes in most
parts of all the solid lines in Fig.3 indicate that direc-
tional smoothing is less sensitive to noise.

When the noise level is low, RMS values from
SNN and MAXH are less than that from directional
smoothing. However the scores which evaluate the fol-
lowing boundary detection show that directional
smoothing still gives the more accurate boundary,
These results indicate that RMS values for edge regions
reflect the edge-preserving smoothing effects 10 some
degree, but are not adequate as sole performance crite-
ria, Furthermore, the relatively poor RMS scores of di-
rectional smoothing in cases with little noise is mainly
due to the plane smoothing in step 1, which is redun-
dant in a low-noise situation where higher-order sur-
face fit can be applied directly without pre-smoothing.

Further experiments were carried out using itera-
tions of SNN and MAXH. However the results were in-
conclusive in terms of the set of performance criteria.
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Fig. 3. Directional smooting vs. SNN & MAXH.



7. CONCLUSION

The new boundary detection algorithm based on
higher order surface fitting and directional smoothing
detects boundaries in noisy images with good noise re-
duction, edge preservation and edge localization. It
should serve as an important initial stage of an object
recognition process for noisy 3D images.
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