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ABSTRACT

The 3D active vision system illustrated in this paper
has been developed for a geometrical study of object
surfaces. Indeed, all our work has been directed towards
the geometrical exploitation of the calculated 3D data. This
is the reason for which the projected grid is considered as
a network of curves rather than a graph.

In order to calculate the 3D coordinates we must
first calibrate the camera and the projector. An original
calibration system is proposed in this paper which
calibrate the projector from the camera and permits to
avoid the manual measurement of the 3D projected grid.
The features of our calibration system are the efficiency,
the autonomy, the precision of the reference data calculus,
and the speed in calculating the systern parameters,

Another important contribution of our work is the
correspondence problem solving. Different from other
published methods, the correspondence is done curve per
curve without any ambiguity by using geometrical and
global constraints. Thus, with the help of our 2D and 3D
methods, all the 3D curves on the object surfaces can be
calculated and not only the grid nodes.

Finally, the two families of 3D curves provided by
our system allow us to calculate easily the shape
parameters by using the concepts of differential geometry.

1- INTRODUCTION

In the recent years, 3D vision system using a
structured light have widely been used in computer
vision. The simplest projects a single spot and requires a
bidirectional angular scanning in order to parametrize the
object surface. The most common projects a laser plane
which provides one parameter of the surface and the
second parameter is defined indirectly . Moreover a very
dense map must be computed in order to use Monge
patch. Contrary to previous methods the grid projection
provides two independent families of 3D curves which
parametrize the object surfaces|GUI8S7] [GUI91]
[STOS86].

Our 3D active vision system using a grid have been
developped for a geometrical study of surfaces.This is the
reason for which all our 2D and 3D proposed methods are
based on curve idea. The 2D methods used in the imaged
grid extraction and which compose the first level of our
3D active sensor will be discussed brievly in section 3.
For more details see [GUIS7|[GUI92].

Obtaining accurate three-dimensional measurements
from a 3D active vision system using a grid is a task
requiring precise calibration and reliable matching
between the imaged grid and the original grid.

The calibration system described in this paper has
been developed particularly for an automatic and
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metrological use. The optical apparatuses which compose
our 3D active sensor are one (or more) camera and one
projector, the camera calibration has been widely analysed
notably in stereo-vision systems [FAU87] but with regard
to active vision system using a projector, few works have
been done in this area.

For the projector calibration the 3D reference data
are the 3D projected grid nodes, in order to avoid all
manual measurements of these data - source of mistakes -
we propose , in section 4 an optical and autonomous
method for the projector calibration.

The major problem of 3D active vision system
projecting an entire grid of lines is the correspondence
problem solving between the original and imaged
grids.We propose in section 5 a reliable method for the
correspondence: each imaged curve is labeled
independently from the other curves by using global and
geometrical constraints, Thus, all the 3D grid points can
be calculated and not only the grid nodes.

QOur 3D sensor provides two families of 3D curves
and permits to tackle easily a geometrical study of object

surfaces. This third level of our system will be discussed
in section 6.

figure1(b): image of
scene with the projected grid

The proposed system consists of the following
three levels :
1) First level : 2D processings
(filtering, skeleton and imaged grid extractions)
2) Second level : 3D processings
(calibration, correspondence, 3D reconstitution)
3) Third level : geometrical study of object surfaces
(surface parametrization, shape ter computations)
In view of the lower level importance in the
comprehension of the developed 3D methods, we give a
brief description of this level.

3- 2D PROCESSING

We describe the imaged grid with the highest
precision. In order to do this, we carry out an efficient
filter DRF[SHES86]. The extracted contours from the
laplacian binary image are smoothed and 1 thick



connected skeleton is obtained by using an algorithm
based on a distance function.

Once the intersection points (or nodes ) of grid
curves are detected, we extract the imaged grid curve per
curve by using a directional procedure,

We reconstitute the imaged grid from the extracted
curves. Thus, we obtain a segmentation of the imaged

id in connected components.

This level has been developed in order to extract as
much as possible the 3D information on object surfaces.
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where: figure2(a) is the initial image, figure 2(b) is the
filtring result, figure2(c) is the skeleton and image2(d)
shows the extracted curves.

4- CAMERA AND PROJECTOR
CALIBRATIONS

The calibration of a 3D active vision system
consists of computing both intrinsic and extrinsic
parameters of the projector and the camera. This operation
1s necessary, on the one hand to solve the correspondence
problem between the imaged grid nodes and the original
grid nodes, and on the other hand to reconstitute the 3D
scene.

The most frequently used approach existing in the
bibliography [FAU87] consists of computing the
perspective transformation matrix from where the camera
parameters are derived by using the properties of the
rotation matrix. The disadvantage of this approach is on
the one hand the indirect calculus of the camera
parameters from the projector transformation matrix
coefficients, and on the other hand the equations allowing
this calculus are non linear and very sensitive to errors.
Indeed, it has been shown that a small error in the
calculated coefficients of the perspective transformation
matrix (due to the noisy 2D and 3D data) induces an
important error on the derived camera parameters and
above all on the calculation of the intrinsic parameters.

Contrary to the previous approach, our method is
rather vectorial. In our case, the perspective
transformation matrix is not explicitly computed but the
camera parameters (extrinsic and intrinsic) are calculated
directly from a recursive succession of linear systems.

In the remaining of this paper, vectors are denoted
by bold characters.

a) Coordinate systems

ofd i
e+ 1
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Where:
- (0,1J,K) is the world coordinate systems

- (2.,1.,J..K)) is the CCD camera orthonormal repere

such that; €. is the camera optic center at a distance f, of
the image plane, (I.J,) is the image plane and K, is the
camera optic axis (the digitized image is 512 x 512
pixels).

- (Q,,1,,J,,K,) is the projector orthonormal repere such

that: €, is the projector optic center at a distance f; of the
grid plane, (I,,J,) is the grid plane(slide) and K, is the
projector optic axis.

b) Reference data )

- The camera calibration pattern is a grid of lines drawn
with a laser printer lying on 2 planes (physical mire) and a
3D calibration point is determined as the intersection of
two lines. ) )

- The projector calibration pattern is a grid of lines drawn
on a transparent support (slide). )

The projector calibration necessitates the knowledge
of the 3D projected grid (optical mire)nodes . In practice,
it is hard to measure manually the 3D coordinates of the
projected grid with a high precision. In order to avoid all
manual measurements and to get the system more i
and precise, we propose to calibrate the projector the
camera. So, we use a slide grid with an orientation of 45°
and we proceed in 4 stages: )
1) we calibrate the camera by using the physical mire
(figure 4(a)) ) )
2) We project the original grid onto the mire
planes.(figured(b))

3) We calculate the 3D projected grid (optical mire) from
the camera parameters and the imaged grid.

4) We calibrate the projector from the original grid nodes
and the calculated 3D projected grid.

The calibration precision depends on the precision of the
reference data: physical and optical mire nodes, imaged
nodes and slide grid nodes.

- Physical mire and the slide grid are provided with a
precision of 0.1 mm and 0.01mm respectively.

- Imaged grid node computations: from the image of the
two superimposed grids ( the mire and the projected grids
(figure 4(b) ), we have to extract and to recognize the two
grids in the image. In order to do this, we have developed
a reliable method which calculate mathematically with the
highest precision the imaged grid nodes of both physical
and optical mires
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figure 4(a): physical mire  figure 4(b) : optical mire
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¢) Problem formulation

We assume that the camera and the projector
perform a perfect perspective transformation with center
Q. and Q, respectively. So, by using vectorial geometry
we get the relationship between: L
- a 3D space point M and its corresponding image M":

f, ;
QM' = ——— QM (1) ((,) = inner product]
(QM.K,)
- and a 2D projected grid node N' and its 3D projection
N: QN' — N (2
d (Q,N.K,) % :

Projecting the relationship (1) onto the vectors I,
and J. and expressing the resulting relationship in both
world repere and camera repere we get for the camera the
following system:

= ka: 1(0 Mk'l‘) b (onnlc)]

.ch - ue
. (OMYK) - (09,KJ)]
2o B, = WRIOMNY) - (00.10] )
o [(OMXK,) - (0Q,K))]
pour k = 1,...., n
where:

[M¥/x=1,n} are the 3D reference points expressed in
(O,1LJ,K) and (i*j*) the 2D coordinates of their
corresponding images .

(a.,B.) are the 2D coordinates of the image origin

(orthogonal projection of €2, onto the image plane).
k, and k, are the interpixel distances in the I, and J,
directions

Likewise, we get from the relation (2) a similar
system for the projector parameter computations.
d) Calibration system resolution

Our objective is to calculate a set of «. and P,
values which converge on the correct image origin value.
This convergence is assumed verified when K, is
perpendicular to the vectors I and J.. In order to do this,
we propose to replace the non linear system (S) by a
succession of linear systems (S)(n) The unknowns of

each linear system are: Ie,J. . K.(0Q,L), (0£,].) and

(0Q2,K,).

The main outlines of our technique are the following:
Each linear system (S), is derived from the system (S),.,
as follows: if (LY J 0 K 1) is the (S),, solution,

then we get the system (S), by setting: o™ = o =1 +
(l‘[l-I).K‘th-l]) and ﬂ‘{nl = [3‘(0‘1) + (J‘lu-ﬂ'xcll-ll)' We

start with o @ = B_© = (., Each linear system is solved
under the constraint || K, ll=1 and the used numerical
method is the pseudo-inverse.

5) Precision test

We test the precision of our calibration system on a
polyedral reference object manufactured with a precision
of 0.lmm . Our precision is of 0.7mm for a distance
between the system camera-projector and the object of
about 3.5 m.

In order to calculate the 3D coordinates from the 3D
active vision system using a projected grid, we have to
solve the correspondence problem which will be
discussed in the following section.

5 -CORRESPONDENCE

The correspondence problem consists of
establishing the link between the projected grid and the
imaged grid. Different from other published
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methods[STOB86], the correspondence problem is solved
curve per curve by using global and geometrical
constraints.

Our method characteristics are the followings :
- The correspondence between an imaged grid curve and
a projected grid line is done independently from the other
curves .
- Each connected component imaged grid is labeled
independently from other components. Thus, the hidden
nodes can be detected .
- We do not have to distinguish between horizontal and
vertical curves ( curves resulting respectively from
horizonial and vertical lines of the projected grid): this is
done by the algorithm.

Let us define some notations:
- d, (resp.d,) denotes horizontal (resp.vertical) line of the
projected grid.
- P, (resp.P,) denotes the plane defined by the projector
focus €2, and d, (resp.d,) .
- M,' (resp.M,}) denotes the intersection between the

camera ray Q. M, (line from the camera focus £, 1o the
imaged node M,) and the horizontal plane P, (resp. the
vertical plane P,)

-E =M, /x suchthat QM NP, #g ) and

-F,={ M, /y suchthat QMNP =g )

( M= intersection symbol

- M, Mii,..., M.y denote n consecutive nodes of
the imaged grid curve (C)
Algorithm UCA (uniform
algorithm)

For any imaged curve (C), we intend to find the
corresponding line. Since this line may correspond to an
horizontal or a vertical line, we do a search among the
horizontal and vertical lines.

The algorithm consists of two stages :

Ist stage For the node M; of the curve (C) we
compute the quantities :

Il MMy Il = min IMGM, lland I M M) Il = min EMLM) I
MEE MeF
2nd stage We use the neighborhood

constraints. Therefore, if we assume that the curve (C)
corresponds to the line d, and the node M, is the image of

d, N d,, then the neighbor M,,; of M; must correspond to

d, N dy,.(ortod,n d,,, ) and so on. Thus, for the
horizontal search , we associate at each d, the sum U,
defined as follow :

o1
I ]
U, = z MMy,
=]

correspondence

W nmytMy e MMy

w1
I I+ " 1y g+l iy kel
U, = zl:"”‘".“”r:-" wir amiIME My tmyt 0
=

Likewise, we associate at each vertical line of the
projected grid the sum U, :
w1

Uy = 3, MM e o ME My < My My
=]

w1
Uy = D, MBS ME I My My < My Myt

w=l
Decision : The curve (C) corresponds to the h_orizontal
line d,, if U,, = min,(U,) is less than U,, = miny (U,),
and to the vertical line d,, else.

From the imaged curves A, and A,, we reconstitute
by triangulation the 3D corresponding curves A, and A,,.



figure 5(¢) : skeleton figure 5(d) : UCA result

( numbers show the corresponding lines)

Notice that - with the help of our 2D and 3D processings
- all the 3D curves can be computed and not only the 3D
grid nodes.

6- GEOMETRICAL INFERENCES

The interest of our system appears in the surface
geomclrica] study. Indeed, we show that we can extract
important information on the surface shape from a few 3D

curves. In order to do this we first, define mathematically
a parametrization of object surfaces.

a) Surface parametrization : The 3D calculated
curves are necessary and sufficient to define matematically
the parametrization r of the surface region GP containing
the 3D projected grid. Thus, GP is defined by: ( r(u,v) =
[x(u,v) , y(u,v) , z(u,v)] where (u,v) moves along the 2
curve families A} and Am ). For more details see [GUI91].
b) Normal field computation: From the
parametrization r we calculate the three fundamental vector
fields for the surface geometrical study:

- 2 tangent vector fields X, and X, such that :

Xi: A = R and X An - R

M = (@r/du)(M) M = (drfav)(M)
- the normal field n :
n: AjlNnAm — R3 (x = cross product)

dr/ou)(M) x (ar/av)(M)
[EECTS T IS T Ty ey
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figure 6(a): depth map

¢) Surface curvatures: The surface shape depends on
the normal vector field changing according to any tangent
direction on the surface, this vanation can be derived from
the normal variation according to the curves A, and A, In
order to calculate the suface curvatures we first, calculate
the covariant derivative of the normal field according to
any tangent direction on the surface. This covariant
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derivative Vy n can be deduced from the normal
variation according to the 3D curves Ajand A, :
Vyn= viVeyn+ v2Veyn with :

V=vl ﬁ(l\‘lo) +v2 9_';'!11Mo)
du dv

r1=SMo) and r'm = SM(Mo)

Since the existing formulas of the Gausian and
mean curvatures from differential forms (connection and
dual forms) in the litterature can not be used under our
hypothesises, we have been obliged to recalculate these
curvatures from our parametrization by using Gauss-
Godazzi formulas.

In order to calculate connection and dual forms, we

define an orthonormal local repere (M,R|,Rm,n) on the
surface derived from the repere ( M, r'p,r'm , n). So,
the calculated connections are the following differential
forms w31 and 32 :

(vl,v2) € R2

w31 VY = [I(Mo}dvl(V) + i2(Mo)dv2(V)

w32 V =  FlI(Mo)dvI(V) + F2(Mo)dv2(V)

fl: M S5Vuyn-R;2: M o Vopn-R)
fl1: M =Vqn Ry f2: M- Ve neRpy
dvl: (viv2) = vl dv2: (viyv2)— 2

And the calculated dual forms 61 and 62 :
2
01(V) =v1 VEp +v2 M 02(v) = v2( Gy - EM)
Ve Ea
Where: Epp , Fypp and Gy are the first quadratic form

coefficients.
Finally, we get the following H and K formulas :

K= (172-£201
2
VEy (GM-FM_ )
EM
— 2
M r1-r2VEy-n(Gy - M)
H= 1 EM Ep

Ll

¢ 2
VEM (GM - _El.!_)

M
These formulas applied on the object in figure 2(a)
show a plane surface (both Gaussian and mean curvatures
are nearly zero) and an elliptical surface.

CONCLUSION

In conclusion, the results obtained from the
experimental tests show the reliability of our methods
based on the curve idea. The features of our system using
a projected grid are its simplicity (the low cost in the
system construction), its efficiency (the surface properties
are calculated from curve fittings) and its precision
(accurate system calibration ).
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