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ABSTRACT

The reliability of 3-D interpretations computed from
images is analyzed in statistical terms. The reliability
of line fitting to edges is evaluated quantitatively, and
the reliability of vanishing point estimation is deduced
quantitatively. The result is applied to focal length cali-
bration. The reliability of fitting an orthogonal frame to
three orientations is also discussed, and statistical criteria
for testing geometric hypotheses are derived.

1. STATISTICAL MODEL OF NOISE

In robotics applications of computer vision, reliability of
computation is of the utmost importance. In the past, re-
liability of computation has often been tested empirically
by using synthetic and real data. For further progress,
we need a theoretical basis for it.

Assume the camera imaging model [3, 4] shown in
Iig. 1: the origin O is called the viewpoint; the constant
[ is called the focal length. A point P on the image plane
is represented by the unit vector m starting from O and
pointing toward P; A line [ on the image plane is repre-
sented by the unit surface normal n to the plane passing
through O and [. We call m and n N-vectors [4].

Let m be the N-vector of a point data on the image
plane when there is no noise. In the presence of noise, a
perturbed N-vector m’ = m+ Am is observed. The error
term Am is regarded as a random variable. Consider the
covariance matrir

V[m| = E[AmAmT], (1)

where E|-] denotes expectation. Suppose noise occurs at
each pixel on the image plane and is equally likely in all
orientations with the same root-mean-square ¢ (measured
in pixels), which we call the image accuracy. If the size of
the image is small compared with the focal length f, the
covariance matrix V[m] of the N-vector of a data pixel
has the following form [5]:
E‘Z
V[m] = EU ~mm’),

(2)

2. RELIABILITY OF EDGES

Let m be the N-vector of a line fitted to edge pixels in
the absence of noise. In the presence of noise, each edge
pixel is displaced [1]. Let n’ = n+ An be the N-vector
of the line fitted to displaced edge pixels (Fig. 2). The
reliability of the fit is described by the covariance matrix

Vin] = E[AnAn"]. (3)

If a line is fitted to an edge segment of length w in orien-
tation u, the covariance matrix V[n] of the N-vector n
of the fitted line has the following form [5]:

(7S K I
Vin]= —uu’ + ——memf, r=—.

w? 2f*w (4)

Fig. 2: Line fitting.

Here, ¢ is the N-vector of the center point of the edge
segment and 7 is the edge density (the number of edge
pixels per unit pixel length). We call the constant » the
image resolution.

The covariance matrix V[n] of the N-vector n of the
line passing through two data pixels has the following
form [5]:

V(n] ~ (i)’uur. (5)

Here, w is the unit vector indicating the orientation of
the line and w is the distance between the two pixels.

3. RELIABILITY OF VANISHING POINTS

If lines {l,}, @ = 1, ..., N, are projections of parallel lines
in the scene, they are concurrent on the image plane,
meeting at a common vanishing point (Fig. 3(a)); its N-
vector m indicates the 3-D orientation of the correspond-
ing lines (Fig. 3(b)) [3, 4, 5]. Let ng be the N-vector of
a hypothetical center line I of the N lines (Fig. 4). Let
m¢ be the unit vector orthogonal to both ng and the
N-vector m of the vanishing point; me can be identified
with the N-vector of a point P on the center line lg,
which we call the conjugate point.

Suppose each line [, is obtained by fitting a line to an
edge segment of length w,. Let mg, be the N-vector of
its center point G,. Let ¢, be the angle between ng and
n, and call it the deviation angle (from the hypothetical
center line) of line I,. Let 0, be the angle between mg,
and m and call it the disparity of the vanishing point from
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Fig. 3: (a) Vanishing point. (b) The N-vector m of the
vanishing point indicates the 3-D orientation of the line.

Fig. 4: The center line lg and the conjugate point point
Ps.

the center point of the ath edge segment. The covariance
matrix V[m] of the N-vector of the estimated vanishing
point is evaluated in the following form [5]:

Gxmem/,

w,3sin? ¢,/ sin’ 0,

Vm] =

6
Z:ral { )

4. FOCAL LENGTH CALIBRATION

The camera model must be adjusted so that it agrees
with the actual camera. The most important parameter
is the focal length f. Its determination is based on the
following fact [3, 5, 6]. Let m and m' be the N-vectors of
the vanishing points of mutually orthogonal lines in the
scene defined with respect to a tentative focal length f.
The true focal length f is given by

f mymy + mam}
mamy

Suppose the two vanishing points are detected as in-
tersections of N and N’ concurrent lines fitted to edge
segments of lengths w, and w,', respectively. Let ¢, and
¢.' be the deviation angles of the individual edge seg-
ments. If the center lines of the two sets of lines meet at
the image origin o and if # and @' are the disparities of
the two vanishing points from o, the variance V|f] of the
focal length f is given as follows [5]:

(
(8)

Consider a square grid pattern placed in the scene
(Fig. 5). Let r be the distance from O to the center of the
grid pattern. The pattern consists of two sets of N (= an
odd number) lines. Let [ be the size of the pattern, and d
the size of the individual grid squares. If I/ f is small, it
can be proved [5] that the minimum of eq. (8) is attained

f (7)

3xf?
9

1/ cos? 0
T we?sin® @,

1/ cos? 0’

22:1 wa'a sin’ ¢’

Vif]=

Fig. 5 The 3-D configuration of the grid pattern.

o Ja V[f n] W,
1| 1027.0 | 110.1 | 0.021
2 | 1136.0 28.4 | 0.083
3| 11499 18.6 | 0.126
4| 11464 13.5 | 0.174
510924 214 | 0.110
6 | 1167.6 55.3 | 0.042
7] 11473 19.3 | 0,122
8| 11422 17.9 | 0,131
9 ] 10925 20,0 | 0,117

10 | 1056.9 31.4 | 0.075

(a) (b)

Fig. 6: (a) A real image of a planar grid pattern. (b)
Focal length f,, variance V[f,], and optimal weights W,
for each trial.

when 8 = #' = 58.61...°, for which the projections of the
two sets of lines meet on the image plane at angle vy =
111.85...° [5].

Let f., @ = 1, ..., N, be N estimates obtained from
different images. It can be shown [5] that the optimally
weighted average is given by

= W, W, : 1
)r_g cu(a' a=m/£mr (9,
and its theoretical variance is
N
Z 1
V[f]—l/‘gm- (10)

The confidence interval can be computed by employing
the Gaussian approximation: the true value f is in-
ferred with (100 — a)% confidence to be in the interval
[F = Aa/VIf], f+ Aa\/VIS]], where A, is the a% point
of the standard normal distribution. However, this anal-
ysis indirectly involves the image resolution x. If « is
difficult to estimate, we can do without it by using the
Student statistic [5]: the (100 —a)% confidence interval is
[f = tan-18/VN =1, [+ tan-18/VN = 1), where t,  is
the a% point of the Student distribution with N degrees
of freedom and s = /SN, W,(f. — f)?. The resolution
& can be chosen arbitrarily [5].

The planar grid pattern of Fig. 6(a) was placed in var-
ious locations and orientations in the scene. Fig. 6(b)
shows the estimated focal lengths f,, their variances
V|fa], and the corresponding optimal weights W,. Tri-
als 1 and 10 correspond to the case in which the pattern
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Fig. T: (a) A real image of a rectangular box. (b) De-
tected edges.

is nearly parallel to the camera image plane. The corre-
sponding variances are very large, meaning that the reli-
ability is very low for such configurations. The optimally
weighted average is f = 1125.0 (pixels). The 95% con-
fidence interval is [1099.6, 1150.4]. Since {/r ~ 1/3 and
d/r = 1/6, the theoretical lower bound of V[f] is V[f]
> 9.1..., meaning that trial 4 (Fig. 6(a)) is very close to
the optimal configuration; the grid lines intersect at angle
112° in Fig. 6(a).

5. ORTHOGONALITY FITTING

In many robotics applications, we encounter the prob-
lem of fitting an orthogonal frame to three axes computed
from real data. For given unit vectors {m;},i =1, 2, 3,
consider the computation of a right-handed orthonormal
system {r;} such that

3

ZW.: 1.

3
Z Willr: — m.,“2 — min, (11)
i=1

The solution is analytically obtained by the method of
singular value decomposition, the method of polar decom-
position, or the method of quaternion representation [5].
Since {r;} is a right-handed orthonormal system, the
matrix R having them as columns is a rotation matrix,
which we call the best-fitting rotation. 1f R is computed
from image data, it may be perturbed into R'. Since
its columns still form an orthonormal system, the trans-
formation from R to R’ is a rotation by some angle AQ
around some axis . Let Al = AU, and define covariance
matrir of rotation R by
V(R] = E|AIALT). (12)
The covariance matrix V[R] of the best-fitting rotation
Rto {m;},1=1,2,3,is given as follows [5] ((-,-) denotes
the inner product of vectors):

3

: Wl xr Vimy(ry xr)) 1
VIR] = k=1""k k J T
B=2 -waa-w,)
(13)
Fig. 7(a) is a real image of a rectangular box. Fig. 7(b)
shows detected edges. The N-vectors m,, my, and m, of
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Fig. 8: (a) Model matching for object recognition. (b)
How should we group these edge segments together?
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Fig. 9: (a) How can we judge the concurrency of edge
segments? (b) Focus of expansion.

the three vanishing points are estimated by optimal least-
squares [5]. Their covariance matrices V[my], V[m,], and
V[myg] are given by eq. (6). The discrepancies of m,, m;,
and mg from the fitted orientations are 1.35°, 1.25°, and
0.97°, respectively. Eq. (13) gives the covariance matrix
V[R], which tells us that the root-mean-square error A
of the angle of error rotation (from the true frame, which
we do not know) is 0.49°.

6. GEOMETRIC TESTING

In recognizing objects in an image, edges are detected
and candidate 3-D models stored in a database one are
matched by one by changing the spatial position and ori-
entation. Then, the one that best matches is chosen as the
true object. It is natural to measure the degree of match-
ing by the discrepancies of the detected edge segments
from the supposed line segments of the model (Fig. 8(a)).
In the past, various discrepancy measures were heuristi-
cally introduced (2, 7], but from eq. (4) we obtain the fol-
lowing criterion: Let mg,, u,, and w, be the N-vector
of the center point of an edge segment, its orientation,
and its length, respectively, and let n be the N-vector of
a line, If

woa . 2 2f2wn

B %)+ ——— (14)
is satisfied, the edge segment cannot be regarded as lying
on the line with confidence (100 — a)%.

We want to know if multiple fragmented edge segments
can be combined together and replaced by a single line [
(Fig. 8(b)) [8]. Let n,, Mmga, Ua, and w, be the N-vector
of the ath edge segment, the N-vector of its center point,
its orientation, and its length, respectively, a = 1, ..., N.
It can be shown (5] that if the N-vector n of the line [
fitted to all the edge segments satisfies

(m, mﬁ'a)z > .\:.‘z

N

)2

3
(an [ﬂa U, ]2 : = 2)(3'-”0(&' mGa]Z) > "-'\:JN' “5}
o=]1
the N edge segments are not regarded as collinear with
confidence (100 — a)%, where x3 , is the a% point of the

x*-distribution with two degrees of freedom.
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(a)

Vanishing points provide important clues to 3-D inter-
pretation [9], but projections of parallel lines may not be
concurrent due to noise (Fig. 9(a)). Let n,, mg,, and
w, be the N-vector of the ath edge segment, the N-vector
of its center point, and its length, respectively, a = 1, ...,
N. It can be shown [5] that a point of N-vector m can-
not be regarded as their vanishing point with confidence
(100 — a)% if

N
Z wnﬁ (I
a=1

If points are rigidly translating in the scene (or the
camera is translating relative to them), their trajecto-
ries are parallel in the scene, defining a common focus
of expansion (Fig. 9(b)): its N-vector indicates the 3-D
orientation of the corresponding 3-D translations [4]. Let
n., Mg, and w, be the N-vector of the trajectory pass-
ing through the ath pair, the N-vector of its center point,
and the distance between the two points, respectively, o
=1, ..., N. It can be shown [5] that a point of N-vector
m cannot be regarded as their focus of expansion with

confidence (100 — a)% if

N
Z we? ( 1

a=1

Fig. 10 shows superimpositions of two real images in
which a stapler undergoes (a) a pure translation, (b) a
translation and a small rotation, and (c) a translation
and a large rotation.
and their trajectories are defined by connecting the cor-
responding posittons. We hypothesize that all the tra-
jectories are concurrent. The validity of this hypothesis
depends on the image accuracy € (in pixels) with which
the feature points are detected. If € < 2.5, the hypothesis
is accepted for (a) but rejected for (b) and (c) with 95%
confidence. If 2.5 < ¢ < 7, the hypothesis is accepted for
(a) and (b) but rejected for (¢) with 95% confidence. If ¢
> T, the hypothesis is accepted for (a), (b), and (¢) with
95%confidence.

_ Imyn., mg,|?

sl : 16
1 —(m, 'm,c;a)n) > OkXaan e}

(17)

s ]m~nusm6'cn[2 > (2\2
| — (m, mg,)? .

Seven feature points are chosen,

7. CONCLUDING REMARKS

In this paper, the reliability of 3-D interpretations com-
puted from images has been analyzed by applying the

(b)

Fig. 10: Superimposed images of a translating stapler.

(c)

statistical theory of Kanatani [5]. First, the reliability of
edge fitting was evaluated in terms of image noise char-
acteristics. Then, the reliability of vanishing point esti-
mation was deduced from the reliability of edge fitting.
The result was applied to focal length calibration, and an
optimal scheme was derived. We also discussed the relia-
bility of fitting an orthogonal frame to three orientations
obtained by sensing.

Finally, statistical criteria were derived for model
matching, testing edge groupings, vanishing points, fo-
cuses of expansion, and vanishing lines. For these prob-
lems, it has been customary to introduce ad hoc param-
eters to be thresholded, but all the criteria given here do
not involve any ad hoc parameters; they are build on a
rigorous statistical basis.
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