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ABSTRACT

All shapes can be represented as deformations from a
standard or prototypical shape; it is thought that this is
how shape is represented in human perception. An object’s
modes are the eigenvectors of its elasticity matrix, and are a
physically-motivated way to obtain a canonical description
of shape in terms of deformation from a prototype. Modes
provide an efficient and reliable method for recovering, rec-
ognizing, and tracking a 3-D solid models from 2-D and 3-D
measurements. Several examples using this technology to
recognize and track people will be presented.

1 INTRODUCTION

The representation of objects by their parts has a long tra-
dition in computer-aided design, simulation, and in cogni-
tive psychology. Indeed, in these areas it is the dominant
strategy for representing complex 3-D objects. It is abso-
lutely clear, therefore, that part representations are excel-
lent for many computational and cognitive tasks. What is
not so clear is how they might be useful in computer vision.

The first parts representation was suggested by Binford
[5]; this is the idea of generalized cylinders. Unfortunately,
the recovery of this type of representation seem. to require
elaborate line grouping and reasoning. Consequently, de-
spite decades of effort, there are few reports of recovering
such descriptions from real imagery [12]. Moreover, be-
cause such descriptions are often not unique it is unclear
how they aid in object recognition.

The idea of generalized cylinders has subsequently been
claborated in two very different ways. One variation is
due to Biederman [4], who suggested using the Cartesian
product of qualitative properties such as tapering, cross-
section, etc., in order to create a qualitative taxonomy of
generalized cylinders. One advantage of this type of rep-
resentation is that the properties can be chosen to be ones
that are more easily recovered from imagery. Another is
that it provides a way to define qualitative shape classes,
an important problem in general-purpose vision. However
only Dickinson, Pentland, and Rosenfeld [8] have reported
being able to use this approach to recognize objects in real
imagery, although Bergevin and Levine [3] have reported
good success in interpreting vectorized line drawings.
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Another alternative to generalized cylinders was sug-
gested by Pentland in 1986 [13], who proposed a paramet-
ric version of generalized cylinders based on deformable su-
perquadrics. Use of a parameterized implicit function, such
as the superquadric, converts the problem of recovering a
description into a relatively simple numerical optimization.
Moreover, if the parameterization is orthogonal then the de-
scription is unique, making the recognition problem much
easier. Dozens of authors have reported success at recover-
ing this type of description from real data and then using
it for recognition, e.g., [19, 15, 22],

Most recently, Pentland [16] has generalized this ap-
proach allow a large number of degrees of freedom, and
to include the physical properties of objects. This has al-
lowed difficult recognition problems, such as the recognition
of people, to be addressed successfully. It has also allowed
the construction of efficient Kalman filters for tracking both
rigid and nonrigid objects. A summary of this recent work
will be the topic of this paper.

2 THE REPRESENTATION

The modal representation may be thought of as describing
objects using the force-and-process metaphor of modeling
clay: shape is the result of pushing, pinching, and pulling
on a lump of elastic material such as clay [13, 15]. Thus all
shapes are represented as deformations from a standard or
prototypical shape. It is thought that this is how shape is
represented in human perception [13].

The mathematical formulation of the “a lump of clay”
idea requires use of the finite element method (FEM), which
is the standard engineering technique for describing phys-
ical behavior and deformation. Using the FEM we can
characterize the elasticity of a prototypical “lump of clay”,
and calculate its deformation modes. These modes are the
eigenvectors of the prototypes’s stiffness matrix, and they
provide a canonical description of all possible shapes in
terms of deformation from the original prototypical shape.

In the FEM, energy functionals are formulated in terms
of nodal displacements U, and iterated to solve for the
nodal displacements as a function of impinging loads R:

MU+CU+KU=R (1)



This equation is known as the FEM governing equation,
where U is a 3n x 1 vector of the (Az, Ay, Az) displace-
ments of the n nodal points relative to the object's center
of mass, M, C and K are 3n by 3n matrices describing the
mass, damping, and material stiffness between each point
within the body, and R is a 3n x 1 vector describing the z,
y, and z components of the forces acting on the nodes.

When a constant load is applied to a body it will, over
time, come to an equilibrium condition described by

KU=R (2)

This equation is known as the equilibrium governing equa-
tion. The solution of the equilibrium equation for the nodal
displacements U is the most common objective of finite el-
ement analyses.

In the type of shape modeling done in computer vision,
sensor measurements are used to define virtual forces which
deform the object to fit the data points. The equilibrinm
displacements U constitute the recovered shape. For addi-
tional detail, see reference [16].

2.1 Modal Analysis

To obtain an equilibrium solution U, one integrates Equa-
tion 1 using an iterative numerical procedure at a cost pro-
portional to the stiffness matrices’ bandwidth. To reduce
this cost we can transform the problem from the original
nodal coordinate system to a new coordinate system whose
basis vectors are the columns of an n x n matrix P. In this
new coordinate system the nodal displacements U become
generalized displacements U:

U=PU (3)

Substituting Equation 3 into Equation 1 and premultiply-
ing by P7 transforms the governing equation into the co-
ordinate system defined by the basis P:

MU+ CUO+ROU=R (4)
where M = PTMP, C = PTCP, K = PTKP, and R =
PTR. With this transformation of basis, a new system
of stiffness, mass, and damping matrices can be obtained
which has a smaller bandwidth then the original system.

The optimal basis ® has columns that are the eigenvec-
tors of both M and K [2]. These eigenvectors are also

known as the system's free vibration modes. Using this
transformation matrix we have
$'Ke =0 e'Me=1 (5)

where the diagonal elements of 02 are the eigenvalues of
M~!K and remaining elements are zero. When the damp-
ing matrix C is restricted to be Rayleigh damping, then it
is also diagonalized by this transformation.

The lowest frequency modes are always the rigid-body
modes of translation and rotation. The next-lowest fre-
quency modes are smooth, whole-body deformations that
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Figure 1: A few of the vibrations mode shapes of a 27 node
isoparametric element.

leave the center of mass and rotation fixed. Compact bod-
ies — solid objects like cylinders, boxes, or heads, whose
dimensions are within the same order of magnitude — nor-
mally have low-order modes which are intuitive to humans:
bending, pinching, tapering, scaling, twisting, and shear-
ing. Some of the low-order mode shapes for a cube are
shown in Figure 1. Bodies with very dissimilar dimen-
sions, or which have holes, etc., can have very complex
low-frequency modes.

2.2 Advantages

The modal representation provides a formulation whose de-
grees of freedom are orthogonal, and thus decoupled, and
form a frequency-ordered orthonormal basis set analogous
to the Fourier transform.

By decoupling the degrees of freedom we achieve sub-
stantial advantages:

o The fitting problem has a simple, efficient, closed-form
solution.

e The model’s intrinsic complexity can be adjusted to
match the number of degrees of freedom in the data
measurements, so that the solution can always be made
overconstrained.

e When overconstrained, the solution is unique, except
for rotational symmetries and degenerate conditions.
Thus the solution is well-suited for recognition and
database tasks.

Moreover, because the representation employed is based
on the Finite Element method, the dynamics of the ob-
served object can be accurately modeled. Asa consequence,
optimal estimates of object motion and shape can be made
even in non-stationary enviroments, and physical predic-
tions/simulation can be made directly from recovered mod-
els. sequences.

2.3 Modeling Using Implicit Functions

It is important to have a unified representation for both
geometric and physical modeling. Our approach is to com-
bine the modal shape deformations defined above with an



implicit function surface such as a sphere or cube. This
combination gives us the advantage of being able to ac-
curately and simply describe physical deformations, and
yet to be able to use the implicit function representation’s
inside-outside function for contact detection and model fit-
ting [20, 14, 9].

In object-centered coordinates r = [r, s, t]7, the implicit
equation of a spherical surface is

fle)=flr,s,t)=r 4+ 412 —1.0=100 (6)

This equation is also referred to as the surface’s inside-
outside function, because to detect contact between a point
X, = [Xp, Yy, Z,)7 and the volume bounded by this surface,
one simply substitutes the coordinates of X into the func-
tion f. If the result is negative, then the point is inside
the surface. Generalizations of this basic operation may
be used to find line-surface intersections or surface-surface
intersections.

A solid defined in this way can be easily positioned and
oriented in global space, by transforming the implicit func-
tion to global coordinates, X = [X,Y, Z]T we get [20]:

X=Rr+b (7)

where R is a rotation matrix, and b is a translation vec-
tor. The implicit function’s positioned and oriented (rigid)
inside-outside function becomes (using Equation 7):

f(r) = f(R7Y(X = b)).

Any set of implicit shape functions can be generalized by
combining them with a set of global deformations D with
parameters m. For particular values of m the new deformed
surface is defined using a deformation matrix Dpy:

(8)

X =RDmr+b (9)

In our system the deformations used are the modal shape
polynomial functions, defined by transforming the original
finite element shape functious to the modal coordinate sys-
tem (see [16] and Appendix A of this paper). These poly-
nomials are a function of r, Equation 9 becomes:

X = RDmir)r+b (10)

The inside-outside function, with nonrigid deformations be-
comes (using Equation 10):

f(r) = f(Pg (r)R™Y(X - b)) (11)

This inside-outside function is valid as long as the inverse
polynomial mapping Dy} (r) exists. In cases where a set of
deformations has no closed-form inverse mapping, Newton-
Raphson and other numerical iterative techniques have to
be used.

This method of defining geometry, therefore, provides
an inherently more efficient mathematical formulation for
contact detection than geometric representations such as
polygons or splines. See Pentland and Williams [14] and
Sclaroff and Pentland [20] for a discussion of the computa-
tional complexity of contact detection algorithms.
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Figure 2: A few of the vibrations mode shapes of a cube,
using idealized deformations

3 IDEALIZED MODES

For applications that do not require accurate physical mod-
eling, such as object recognition, we have found that it is
adequate to use a single set of particularly simple deforma-
tions derived using idealized elasticity properties. More-
over, because the elastic properties of the model are of no
concern, it is sufficient to set K to be the identity matrix,
except for rigid-body modes which have zero stiffness.

The entries of the idealized deformation matrix Dy for
these idealized modes are as follows,

doo = me + smyz + tmys — (my3 + myg)sgn(r)
=My — My

doy = myy + 2s(my3 + sgn(r)myy)

doa = mya + 2t(mye + sgn(r)myz)

dyg = myy+ 2r(mye + sgn(s)mao)

dyy = mr+ rmgg + tmgy — (myg + myz)sgn(s) (12)
=g — M3

dyz = mg+ 2t(myz + sgn(s)mas)

dyg = myg + 2r(mgs + sgn(t)mag)

dyy = mg+ 2s(mas + sgn(t)mag)

dy; = mg + rmgy 4 smay — (mas + mag)sgn(t)
—Mizag — M9

where m = [rn",m|..“.m,._|]r is a p x 1 vector of the

modal amplitudes, and r = [r, s, t]7 = is the coordinate of
a point in undeformed space.

The modal amplitudes m; formulated in this way have
an intuitive meaning. Modal amplitudes mg - ms are the
rigid body modes of translation and rotation, mg - mg are
the x, y, and z sizes, mg - myy are shears about the x, y,
and z axes and the rest are bends, tapers and pinches in
various axes. Figure 2 illustrates a few of these idealized
deformation modes for a cube; the reader should compare
this figure to Figure 1.

4 RECOVERING 3-D MODELS

Let us assume that we are given m three-dimensional sen-
sor measurements (in the global coordinate system) that
originate from the surface of a single object

X"

[y

B AR T R

W W
1 Fons Yom s T

= 7

(13)



We then attach virtual springs between these sensor mea-
surement points and particular nodes on our deformable
model. This defines an equilibrium equation whose solu-
tion U is the desired fit to the sensor data. Consequently,
for m nodes with corresponding sensor measurements, we
can calculate the virtual loads R exerted on the undeformed
object while fitting it to the sensor measurements. For node
k these loads are simply

(14)

73k, raks1s rakaa)” = (28, 0, 2007 — l2k, e, )T

where

(15)

are the nodal coordinates of the undeformed object in the
object’s coordinate frame. When sensor measurements do
not correspond exactly with existing nodes, the loads can
be distributed to surrounding nodes using the interpola-
tion functions used to define the finite element model, as
described in [16).

Thus to fit a deformable solid to the measured data we
solve the following equilibrium equation:

X= [:'h Vv 21y "y Ty Yny :"]T

KU =R (16)

where the loads R are as above, the material stiffness ma-
trix K is as described above and in [16], and the equilibrium
displacements U are to be solved for. The solution to the
fitting problem is simply

U=K 'R (17)
The difficulty in caleulating this solution is the large di-
mensionality of K, so that iterative solution techniques are
normally employed.

However a closed-form solution is available simply by
converting this equation to the modal coodinate system.
This is accomplished by substituting U = U and premul-
tiplying by #7, so that the equilibrium equation becomes

?"KeU =¢"R (18)
or equivalently o= -

KU=R (19)
where R = ®"R and K = TK® is a diagonal matrix.
Again, note that the calculation of ® needs to be performed
only once as a precomputation, and then stored for all fu-
ture applications. Further, it is normally not desirable to
use all of the eigenvectors (as explained below), so that the
$ matrix remains of managable size even when using large
numbers of nodes. In our implementation @ is normally a
30 x 3n matrix, where n is the number of nodes.

The solution to the fitting problem, therefore, is obtained
by inverting the diagonal matrix K:

U=K"'R (20)
Note, however, that as this formulation is posed in the ob-
ject's coordinate system the rigid body modes have zero
eigenvalues, and must therefore be solved for separately by
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setting ©; = 7, 1 <1 € 6. The complete solution may be
written in the original nodal coordinate system, as follows

U=%K+1I) 'R (21)
where Ig is a matrix whose first six diagonal elements are
ones, and remaining elements are zero.'

The major difficulty in calculating this solution occurs
when there are fewer degrees of freedom in sensor measure-
ments than in the nodal positions — as is normally the case
in computer vision applications. Previous researchers have
suggested adopting heuristics such as smoothness and sym-
metry to obtain a well-behaved solution; however in many
cases the observed objects are neither smooth nor symmet-
ric, and so an alternative method is desirable.

A better method is to discard some of the high-frequency
modes, so that the number of degrees of freedom in U is
equal to or less than the number of degrees of freedom in
the sensor measurements. To accomplish this, one simply
row and column reduces K, and column reduces @ so that
their rank is less than or equal to the number of available
sensor measurement degrees of freedom. The motivation
for this strategy is that:

e When there are fewer degrees of freedom in the sensor
measurements than in the model, the high-frequency
modes cannot in any sense be accurate, as there is
insufficient data to constrain them. Their value pri-
marily reflects the smoothness heuristic employed.

While the high-frequency modes will not contain infor-
mation, they are the dominant factor determining the
cost of the solution, as they are both numerous and
require the use of very small time steps [14].

Perhaps the most interesting consequence of discarding
some of the high-frequency modes, however, is that it allows
Equation 21 to provide a generically overconstrained esti-
mate of object shape. Note that discarding high-frequency
modes is not equivalent to a smoothness assumption, as
sharp corners, creases, etc., can still be obtained. What
we cannot do with a reduced-basis modal representation is
place many creases or spikes close together.

4.1 Using 2-D Contours and Points

In the case where we are given only 2-D information we can
still employ the same equations to estimate shape, however
we must generalize Equation 21 to reflect the uncertainty
we have about the z coordinate of each point. This can
be accomplished by altering Equation 21 to reflect the fact
that some sensor measurements are more certain than oth-
ers. We accomplish this by introducing a 3n x 3n diagonal
weighting matrix W:

U=K;'(We)'R (22)

! Inclusion of the matrix Is into Equation 21 may also be interpreted
as adding an external force that constrains the solution to have no
idual translational or rotational stresses,




Range Data  Lower Order Fit

Final Fit

Figure 3: Fitting laser rangefinder data of a human face.
Left column: original range data, Middle column: recov-
ered 3-D model using only low-order modes, Left Column:
full recovered model.

The diagonal entries of W are inversely proportional to
the uncertainty (variance) of the data associated with each
of the nodal coordinates. The effect of W is to make the
strength of the virtual springs associated with each data
point reflect the uncertainty of the measurement.

4.2 An Example Using 3-D Point Data

The left-hand image of Figure 3 shows an example using
360° laser rangefinder data of a human head. There are
about 2500 data points. Equation 21 was then used to es-
timate the shape, using only the low-frequency 30 modes.
The low-order recovered model is shown in the middle col-
umn; because of the large number of data points execution
time on a Sun 4/330 was approximately 3 seconds. It can
be seen that the low-order modes provide a sort of qualita-
tive description of the overall head shape.

A full-dimensionality recovered model is shown in the
right-hand image of 3. In the ThingWorld system [14, 15],
rather than describing high-frequency surface details using
a finite element model with as many degrees of freedom as
there are data points, we normally angment a low-order fi-
nite element model with a spline description of the surface
details. This provides us with a two-layered representa-
tion (low-order finite element model + surface detail spline
description = final model) that we find to be both more effi-
cient to recover and more useful in recognition, simulation,
and visnalization tasks than a fully-detailed finite element
model.

5 OBJECT RECOGNITION

Perhaps the major drawback of previous shape-modeling
techniques is that they have not been useful for recogni.
tion, comparision, or other database tasks. This is because
they normally have more degrees of freedom than there
are sensor measurements, so that the recovery process is

underconstrained. Therefore, although heuristics such as
smoothness or symmetry can be used to obtain a solution,
they do not produce a stable, unique solution.

The major problem is that when the model has more
degrees of freedom than the data, the model’s nodes can
slip about on the surface. The result is that there are an
infinite number of valid combinations of nodal positions
for any particular surface. This difficulty is common to
all spline and piecewise polynomial representations, and is
known as the knot problem.

For all such representations, the only general method for
determining if two surfaces are equivalent is to generate
a number of sample points at corresponding positions on
the two surfaces, and observe the distances between the
two sets of sample points. Not only is this a clumsy and
costly way to determine if two surfaces are equivalent, but
when the two surfaces have very different parameterizations
it can also be quite difficult to generate sample points at
“corresponding locations” on the two surfaces.

The modal representation, assuming that all modes are
employed, decouples the degrees of freedom, but it does
not by itself reduce the total number of degrees of freedom.
Consequently, a complete modal representation suffers from
the same problems as all of the other representations.

The obvious solution to the problem of non-uniqueness is
to discard enongh of the high-frequency modes that we can
obtain an overconstrained estimate of shape, as was done
for the shape recovery problem above. Use of a reduced-
basis modal representation results in a unique representa-
tion of shape because the modes (eigenvectors) form an
orthonormal basis set. Therefore, there is only one way to
represent an object, and that is in its canonical position.

Further, because the modal representation is frequency-
ordered, it has stability properties that are similar to those
of a Fourier decomposition. Just as with the Fourier decom-
position, an exact subsampling of the data points points
does not change the low-frequency modes. Similarly, ir-
regularities in local sampling and measurement noise tend
to primarily affect the high-frequency modes, leaving the
low-frequency modes relatively unchanged.

The primary limitation of this uniqueness property stems
from the linearization of rotation.
are linearized, it is impossible to uniquely determine an ob-
ject's rotation state. As a consequence object symmetries
can lead to multiple descriptions, and errors in measuring
object orientation will cause commensurate errors in shape
desription.

Thus by employing a reduced-basis modal representation
we can obtain overconstrained shape estimates that are also
unique except for rotational symmetries. To compare ob-
jects | and k with known mode values U' and U¥, one
simply compares the two vectors of mode values:

Becaunse the rotations

Ul Ok
= e e (23)
(UG
Vector norms other than the dot product can also be em-
ployed; in our experience all give roughly the same recog-
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pition accuracy.

To recognize a recovered model with estimated mode val-
ues U, one compares the recovered mode values to the mode
values of all of the p known models:

0. Ok

= 24
[roluky v

£k E§=1,2,...4+P
The known model k with the maximum dot product eg is
the model best matching the recovered model, and thus
declared to be the model recognized. Note that for each
known model k, only the vector of mode values U* needs
to be stored.

The first six entries of @ are the rigid-body modes (trans-
lation and rotation), which are normally irrelevant for ob-
ject recognition. Similarly, the seventh mode (overall vol-
ume) is sometimes irrelevent for object recognition, as
many machine vision techniques recover shape only up to
an overall scale factor. Thus rather than computing the
dot product with all of the modes U, we typically use only
modes number eight and higher, e.g.,

i=m ~ =k
E’:B u,u, k=1, o Jo Y (25)
VI a2y/Tizr (ak)?

where m is the total number of modes employed. By use
of this formula we obtain translation, rotation, and scale-
invariant matching.

The ability to compare the shapes of even complex ob-
jects by a simple dot product makes the modal represen-
tation well suited to recognition, comparison, and other
database tasks. In the following section we will evaluate
the reliablity of the combined shape recovery/recognition
process.

Ep =

5.1 Recognition: 3-D Data

To assess accuracy, we conducted an experiment to recover
and recognize face models from range data generated by
a laser range finder. In this experiment we obtained laser
rangefinder data of eight people’s heads from a five different
viewing directions: the right side (—90°), halfway between
right and front (—45°), front (0°), halfway between front
and left (459), and the left side (90°). We have found that
people’s heads are only approximately symmetric, so that
the +45% and +£90° degree views of each head have quite
different detailed shape. In each case the range data was
from the forward-facing, visible surface only.

Data from a 360° scan around each head was then used
to form the stored model of each head that was later used
for recognition. Full-detail versions of these eight reference
models are shown in Figure 4; note that in some cases a
significant amount of the data is missing. As previously,
only the low order 30 deformation modes were used in the
shape extraction and recognition procedure. Because the
low order modes provide a coarse, qualitative summary of
the object shape (see the middle column of Figure 3) they
can be expected to be the most stable with respect to noise
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Figure 4: Eight heads used in our recognition experiment.
Note that in some cases there is significant missing data.

-90° —45° 0° 45° 80°
0.16 -0.19 -0.24 -0.19 -0.12
0.26 0.28 0.35 0.37 0.30
c 0.88 0.99 0.99 0.98 0.99
d 0.03 0.15 0.21 0.21 0.11
e 0.06 -0.13 -0.10 -0.04 -0.06
f 0.58 0.44 0.46 0.46 0.50
B 0.53 0.53 0,52 0.50 0.58
h 0.42 0.47 0.53 0.49 0.50
Figure 5: Recognizing faces from five different points of
view,

and viewpoint change. Total execution time on a standard
Sun 4/330 averaged approximately 5 seconds per fitting and
recognition trial,

Recognition was accomplished by first recovering a 3-D
model from the visible-surface range data, and then com-
paring the recovered mode values to the mode values stored
for each of the three known head models using Equation
25. The known model producing the largest dot product
was declared to be the recognized object. The first seven
modes were not employed, so that the recognition process
was translation, rotation, and scale invariant.

Figure 5 illustrates typical results from this experiment.
The top row of Figure 5 illustrates the five models recov-
ered from range data from the front, visible surface using
viewpoints of —90°, —45°, 0°, 45°, and 90°. Each of these
recovered head models look similar, and more importantly
have approximately the same deformation mode values U,
despite the wide variations in input data. Modes 8 through
30 of these recovered models were then compared to each



5 Contours

3 Contours

2 Contours

Figure 6: Set of contour groups used in head recognition
from contours example. These contours were taken from
the same head depicted in Figure 3 (Head ¢ in Figure 4).

of the stored head models. The dot products obtained are
shown below each recovered head model.

In Figure 5 all of the input data was views of Kim (de-
picted as “head c” in the tables). As can be seen, the dot
products between recovered 3-D model and known model
are quite large for Kim's head model. In fact, in this exam-
ple the smallest correct dot product is almost three times
the magnitude of any of the incorrect dot products; the
same was also true for range data of the other subjects.

In this experiment 92.5% accurate recognition was ob-
tained, That is, we successfully recovered 3-D models and
recognized each of the eight test subjects from each of the
five different views with only three errors. Analysis of the
recognition results showed that, while the average dot prod-
uct between different reference models was 0.31 (72°), the
average dot product between models recovered from differ-
ent views of the same person was 0,95 (18”), Thus recogni-
tion was typically extremely certain. All three errors were
from front-facing views, where relatively few discriminat-
ing features are visible; remember that only overall head
shape, and not details of surface shape, were available to
the recognition procedure as only 30 modes were employed.

5.2 Recognition: 2-D Data

In a sumilar head recovery and recognition experiment, we
used a few 2-D head contours instead of full range data to
see how well our techniques performed in the case of sparse
silhonette data. In this experiment, we recovered heads
from 2, 3, and finally 5 contours, in order to approximate
the information available in an active vision scenario. In
each trial, the contours were spaced evenly in rotation. An
example of the contours used in this experiment is shown
in Figure 6; these contours were taken from the same head
depicted in Figure 3 (“head ¢" in Figure 4).

As in the previous experiment, the recovered heads were
compared against the full-detail versions of the reference
heads shown in Figure 4, and the model producing the
largest dot product was declared to be the recognized ob-
ject, Heads were compared using the scale, rotation, and
translation invariant matching of Equation 25.

In our experiments with two contours, recognition accu-
racy averaged 93.75%. Accuracy improved as more con-
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tours were added until 96.875 percent of the heads were
correctly identified when 5 contours were used. The re-
sults were not as good if the contours did not include the
traditional side “silhouette,” and performed best when the
data’s spring attachment was smoothed out more across
the surface. Total execution times were slightly greater
than those for the full data experiment, averaging 5 sec-
onds per fitting and recognition trial on a Sun 4/330. The
greater execution time is attributable to the more careful
distribution and smoothing of spring attachment between
contours and the underlying deformable model.

6 DYNAMIC TRACKING

In the previous sections we have addressed static shape
estimation and recognition. For sequences, however, it is
necessary to also consider the dynamic properties of the
body and of the data measurements. The Kalman filter is
the standard technique for obtaining estimates of the state
vectors of dynamic models, and for predicting the state
vectors at some later time. Outputs from the Kalman filter
are the optimal (weighted) least-squares estimate for non-
Gaussian noises.

Kalman filtering has been used in many motion estima-
tion applications [6, 10], but normally it is both too expen-
sive and requires too much storage to apply to the large
number of variables typical of a whole-body finite element
model. However, because the modal representation allows
us to summarize the dynamic state of the body with only
a small number of parameters, development of a Kalman
filter is straightforward.

Because of space limitations, we will forego the detailed
development of the Kalman filter equations. Readers inter-
ested in this detail are referred to references [17, 18, 1].

6.1 Tracking Examples

Figure 7(a) shows one frame from a sequence of X-ray im-
ages, with the zero-crossing edge contours overlayed. From
these contours the 3-D shape was estimated using Equa-
tion 22. The resulting shape is shown in Figure 7(b) as a
3-D wireframe overlayed on the original X-ray data. Fig-
ure 7(c) shows the recovered model from the side. Because
only bounding contour information was available, the shape
estimated along the z axis (shown in Figure 7(c)) is deter-
mined by finding the minimum stress state that still fits the
bounding contour. The z-axis shape cannot, therefore, be
regarded as accurate but only as plansible and consistent.
Note that use of a minimum stress criterion for solution
means that symmetric and mirror symmetric shapes are
preferred. Execution time was approximately one second
on a standard Sun 4/330. For additional detail see Pent-
land and Sclaroft [16].

Figure 8 shows an example of recovering non-rigid motion
from contour information. The 3-D shape and motion of
the heart ventricle was tracked over time using the contour
information shown at the top within each box of Figure 8.



(a) (b) (c)

Figure 7: An example showing the use of a 2-D image con-
tour to recover a 3-D deformable solid model. The original
image and contour are shown in (a). The model is recov-
ered from the contour as shown in (b). An orthogonal side
view is shown in (c).

For each frame Equation 22 was used to obtain an estimate
of 3-D shape from the contour information (see Figure 7).
These shape estimates were then integrated in a Kalman
filter formulation, as described in Pentland and Horowitz
[17]. As in the single-image case, deformations along the
z axis are determined by finding the minimum stress state
that still fits the bounding contour. The z-axis deforma-
tions cannot, therefore, be regarded as accurate but only
as plausible. Execution time was approximately one second
per frame on a standard Sun 4/330.

Figure 9 illustrates a more complex example of tracking
rigid and non-rigid motion. This figure shows three frames
from a twelve image sequence of a well-known tin woods-
man caught in the act of jumping. Despite the limited
range of motion, this example is a difficult one because of
the poor quality optical flow, due to pronounced highlights
on thighs and other parts of the body.

In this example an articulated 3-D model was constructed
by hand, with spring-like attachment constraints inserted
between the various body parts. In this manner the com-
bined behavior of the various parts were constrained to be
consistent with the physics of the situation: parts must
stay connected, movement by one part causes an equal but
opposite reactions among the other parts, and inertia is
conserved.

We then calculated optical flow by use of a block-wise
Horn-Schunk algorithm, and then our Kalman filter formu-
lation used to estimate the motions of the various parts.
The between-part attachment constraints then introduce
additional forces that enforce the conservation of force and
inertia. All of these forces are then integrated to produce
a final physically-consistent estimate of the overall motion
at each instant in time,

The estimated motions for this sequence are illustrated
by the bottom row of Figure 9. As can be seen by compar-
ing the 3-D motion of the model with that in the original
image, the resulting tracking is reasonably accurate. For
additional information, see references [17, 18].

6.2 A Computer Graphics Application

Most interactive computer applications require harnessing
the nser with wires. This detracts both from the enjoyment

Frame 9

Frame 6

Frame 12 Frame 18 Frame 27

Figure 8: A heart’s nonrigid motion as it was recovered
from contours taken from a motion sequence. The contours,
extracted via a simple threshold and zero crossing scheme,
are shown along the top. The deformable model recovered
from these contours is shown in wireframe.

Figure 9: Three frames from an image sequence showing
tracking of a jumping man using an articulated, physically-
based model. Note that despite poor quality optical flow
(due to pronounced highlights on thighs and other parts of
the body) the overall tracking is reasonably accurate.
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Figure 10: System organization

of the experience, and from the practicality of the system
for day-to-day use. We have therefore used our tracking
techniques to develop a completely passive system that pro-
vides “real-time” estimates of position and orientation, in
a manner similar to the Polhemus sensor, but without the
wires.

Our system uses a single CCD camera to estimate the
low-order rigid-body modes. In initial testing, our system
has shown itself to be competitive in accuracy with the
Polhemus sensor. Our system has so far been applied only
to the problem of tracking the user’s head, however there
is nothing in the formulation that is specific to the human
head.

We have used this system in two separate applications:
virtual holography, and teleconferencing. In the virtual
holography application, a stereoscopic display is controlled
by the user's head position so that the user sees an appar-
ently solid object before him. He can look “around” the
displayed objects, and see what they look like from various
viewing positions. In the teleconferencing application, the
user's head position is tracked, and used to control display
of a 3-D model of the user's head to other teleconference
participants.

In both applications there is a requirement for precise
synchronization of action (display) with the exterior physi-
cal state (users head position). We have developed a combi-
nation of dataflow technigues and optimal linear prediction
to obtain close synchronization between user movement and
computer generated display, as is illustrated in Figure 10.
This organization also allows the system to be distributed
across several different computing engines.

Figure 11(a) illustrates the system operating in the vir-
tual holography mode. In this mode the head position is
tracked and used to control a stereographic display, thus
simulating the experience of viewing a real object. Note
the camera placed on top of the computer monitor; this is
the sole input to the system.

Figure 11(b) compares the accuracy of the Polhemus sen-
sor and our Kalman filter for tracking head position; the
Kalman filter output has been calibrated to the Polhemus
output. The horizontal axis is time, and the vertical axis
is the r-coordinate of a user’s head as he moves about in a
general manner (including head rotations). The solid line

Folhemus Reading
Vislon Estimate

(b) Timatl0the of .n

Figure 11: (a) The head tracking system in virtual hologra-
phy mode, note camera at top of monitor. (b) Comparison
of Polhemus and Kalman filter estimates of head position.

is the Polhemus estimate of position, the dashed line the
Kalman filter estimate of position.

As can be seen, the Kalman and Polhemus estimates of
position are quite similar. At the start the Kalman fil-
ter has no information about head position, just an initial
guess. Once the head starts moving, the estimates quickly
converge to the correct value, Although this is a very lim-
ited data sample, it is sufficient to form an initial estimate
the Kalman filter's accuracy. Taking the Polhemus sen-
sor’s output as the “true” position signal, then the signal-
to-noise ratio of the Kalman filter output is 22dB (0.6 %
error). This is comparable to the advertised signal-to-noise
ratio of the Polhemus sensor.

7 SUMMARY

We have described an efficient method for recovering, rec-
ognizing, and tracking 3-D solid models using either 2-D or
3-D sensor measurements, Because the recovered 3-D shape
description is unique except for rotational symmetries, we
may efficiently measure the similarity of different shapes
by simply calculating normalized dot products between the
mode values U of various objects. Such comparisons may
be made position, orientation and/or size independent by
simply excluding the first seven mode amplitudes. Thus
the modal representation seems likely to be useful for ap-
plications such as object recognition and spatial database
search,
The major weaknesses of our current method are

o The need to estimate initial object orientation to
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within £15°, as in our formulation rotational variation
has been linearized.

o The need to segment data into simple, approximately
convex “blobs” in a stable, viewpoint-invariant man-
ner.

In the current implementation of our system we use a stan-
dard method-of-moments to obtain initial estimates of ob-
ject orientation, and a minimum description length tech-
nique to produce segmentations [7]. We are now work-
ing to integrate the segmentation procedure of Dickin-
son, Pentland, and Rosenfeld [8] to produce an integrated
segmentation-fitting-recognition system.
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