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ABSTRACT 
AU s h a p ~ s  ran  he r ~ p r e s e n t ~ d  as deformations from a 

standard or  prototypical shape; it is t h o ~ ~ g h t  that this is 
how shape i s  r c p r ~ s ~ n t e d  in haman perception. An object's 
modes ate the eigenvectors of its elaqticity matrix, and arr a 
phy.sically-motivated way to obtain a canonical description 
of s h a p ~  in terms of deformation from a prototype. Modes 
providp xn efficient and reliable method fot rerovering, rec- 
ognizing, m d  tracking a 3-D solid motids from 2-D and 3-13 
rneunrcrn~nts.  S ~ v c r d  examples us in^ this t ~ d ~ n o l o ~ y  lo 
r~cogniar and track pooplp will be prvsentcd. 

I INTRODUCTION 

Thp representation of objects by their parts h x ~  a l o n ~  tra- 
ciition In compntrr-aided drsign. sirnillation, and in cogni- 
tive P R Y T ~ D ~ R V ,  In d~ed ,  in t h ~ s e  a r e a  it is the dominant 
r;tratPgv for r ~ p r ~ s r n t i n g  con~plcx 3-D o h j ~ c t s .  It is ahsc- 
h~tel?  dcar. t h e r ~ f o r ~ ,  that part representations are excel- 
hnt for many computational and co~nitive tasks. What is 
not so c l ~ a r  is how they might he nsefl12 in computer vision. 

T I l t b  first parts reprrsmt.ation w s  sng~rsted hy Biniortl 
Is]; this i s  t l ~ r  idpa of gen~ralized cylind~rs. Unfortunately, 
the recovery of this type of r r p r ~ s ~ n t a t i o n  sreIt1.1 t o  require 
elahoratc line amnpine; and rrasoning. Cons~qo~n t ly ,  de- 
~ p i t e  d~cadrs of e f i r t ,  thcrr are few rpports of rccovcring 
such descriptions from rcd i m a g ~ r y  6121. Mormvcr, he- 
cailaP such descriptions are often not unique it is unclear 
how they xiti in ohjprt r~cognition. 

The idea of generdiz~d cylinders has subseqtiently hwn 
elaborated in two v ~ r y  d i f f ~ r ~ n t  ways. One variation is 
due to Biederman 141, who si~ggested using the Ca~tesian 
product of q r i d t a t i v ~  propertics snrh tapering, cross- 
section, ~ t c . ,  in order to  create a qualitative taxonomy of 
gencrnlizrd cylindrrs. One advantage of this type of rep- 
resentation is that the prap~r t ies  can h r  chos~n  to be onec 
that RrP mnre ensily r ~ r o v ~ r ~ c l  from imagery. Another i s  
that  it provides a way to d ~ f i n ~  qualitative shape classes, 
an import ant prot)l~rn in grnrrd-1)urposp vision. However 
only Dickinson, Pmtland, anrl Rownf~ld  [s] have r~por te t l  
being a h l ~  to ttar this appmacli to rcrognim ootrjects in red 
imagery, although D P T . ~ ~ V V ~ ~  and L ~ v i n r  131 have reported 
~ o o d  stwrsss in i n t ~ r p r r t i ~ l a  v~ctorjzrd line drawincs. 

Another alternative to  g~neralized cglind~ra was sug- 
gested by P ~ n t l a n d  in 1986 [IS], who proposed a pxamrt-  
ric version of g~neralized cylinders h a s ~ d  on deformallle su- 
petq~iadrics. USP of a pararnetrrized implicit fimction, siich 

the fiuperquadric, converts the prohl~rn of r ~ c o v ~ r i n g  a 
description into a relatively simple numerical optimization. 
Moteov~r.  if the parametetization is orthogonal then the de- 
scription is unique, making the recognition prohl~m much 
eas i~r .  Doz~ns of authors have reported success a t  recovrr- 
ing this type of description from real data  and then using 
it for recognition, e-g., [19, 15, 221. 

Most tec~ntly,  Pmtland 1161 has g~n~ra l i zcd  this ap- 
proach allow n l i r rg~ n n m b ~ r  of dpgrccs of frwdorn, and 
to  include the physical properties of o h j ~ r t a .  This has d- 
lowed difficult recognition prolllerns, surh a.< t 11~  r~rognition 
of peoplc, t o  hp a t l t l r ~ s s ~ d  sncccssfr~liy, It has also allowed 
the constn~ction of efficient Kdman f i l t ~ r ~  for tracking both 
rigid and nonrigid ob j~c t s .  A summary of this r ~ r ~ n t  work 
will he the topir of this paper. 

2 THE REPRESENTATION 

The modal rcpr~rentation may be thought of as desrri1)in~ 
ohjects using the forcr-and-proc~ss metaphor oi rnodcZin~ 
day: ahape is the result nf pnsh in~ ,  pinching. and pitUin~ 
on a lump of elastic rnatrrid such  it^ clay 113, 151. Thus all 
shapes are r~prescnted n~ drforrniltionr: from a stanilartl or 
prototypical ~bapr .  Tt is thonght that this is how a h a p ~  is 
represented in human perception 1131. 

T ~ P  mathematical formulation of the "a lump of clay" 
idea requires use of thr finit* r l e m ~ n t  method (FEM), which 
is the standard enginwring techniq~re for describing phps- 
icd behavior and dpformation. Using the FEM we can 
characterize the elasticity of a prototypical "lump of clay", 
and cdcdate its deformation modes. Thrsp rnorl~s arP t h ~  
~igenvectors of thc prntotypcs's stiffn~ss matrix, and they 
provide a canonical iIrscriptinn of xll possihl~ sha~prs in 
terms of deformation from the original prototypical shape. 

In the FEM, PnPrRy firnctionds arp fortitnlatrd in terms 
of nodal displacem~nts U,  and i t ~ r a t ~ d  to s o l v ~  for the 
nodal di~placementn xq a fnnction of impinging loads R: 



This equation i~ known as the FEM governing equation, 
where U is a 3n x 1 vector of the (Az, Ay, A:) displace- 
ments of the n nodd points relative t o  the object's center 
of mass, M. C and K are 3n by 3n matrices dpscribing the 
mass, damping, and material stiffness between each point 
within t h ~  hndy, and R is a 3n x 1 vector describing the z, 
y, and z tomportent# of the forces acting on t h ~  nodes. 

When a constant load is applied to  a body i t  will, over 
time, comc to ;in equilibrium condition described by 

This qua t ion  is known as the ~quifibriurn ~overning q u a -  
tion. The solution of the equilibriilm equation for the nodd 
displacem~nts U is the mofit common objective of finite 4- 
ement analyn~s. 
h she type of shape modeling done in computer vision, 

sensor rnen~urementa me used t o  de f in~  v irt~ id  fnrces which 
deform t h ~  object t o  fit the data points. The equilihtinm 
displacem~nts 'El constitate the r e c o v ~ r ~ d  shape. For addi- 
tional detail, see tefer~ncc [16]. 

2.1 Modal Analysis 

To obtain an equilibrii~m solution U,  one integrates Eqlia- 
tion 1 using an i t~ ra t ive  numericd procednrc at a cost pro- 
portional t o  the stiffnpsr matrices' bandwidth. To reduce 
this cost we can transform the problem from the 0 r i ~ i n d  
nodal coordinate system to a new coordinate system whose 
basis vectors ate the columns of xn n x n matrix P. In tb.5 
RPW coordinate system the nodal displacements U become 
generalized displact-meo ts 3: 

Substituting Eqt~ation 3 into Equation 1 and premnltiply- 
ing hy transforms the governing eqnation into the co- 
ordinate system defined by the basis P: 

w h ~ r e  fi = P T ~ p ,  C = P~CP, l? = pTKP, and R = 
P T ~ .  With this trmdorrnation of bash, a new system 
of stiffness. mass. and damping matrices can be obtained 
which has a smaller bandwidth then the original system. 

The optimal basis @ has  columns that arp the eigenvec- 
tors of Iloth M and K [2]. These eigenvcctora are dso 
known ar; t h ~  system's fw vibration mod~s. Using this 
transformation matrix we have 

where the diagonal el~rnentr: of fla arc the e i ~ ~ n v a l n ~ s  of 
M-'K and remaining elements are ZWQ. \men the d a m p  
ing matrix C is restricted to  he Finylctgh ~lnrnptng~ then it 
is also diaganalized by this transfantion. 

The low~st  frequency modes are always the rigid-body 
m o d ~ s  of translation and rotation. The next-lowest fre- 
qi~cncr modes are smooth. whole-body deformations that 

Figure I: A few of the vibrations mode shapes of a 27 node 
isoparametric element. 

h v e  the center of mass and rotation fixed. Compact bod- 
ies - solid object8 like cylinders, boxes, or heads, whose 
dimensions are within the same order of magnitude - ~ O T -  

mally have low-order modes which are intuitive to hnmnnl: 
bending, pinching, taper in^, scalinp;, twisting, and ~henr-  
Enp;. S o m ~  of the low-order mode shapes for a cnbe are 
shown in Fignre 1. Dodies with very Rissidar dimen- 
sion#, or  which have holes. eEc., can have wry  complex 
low-frequency modes. 

2.2 Advantages 

The modal repreficntation providm a formulation whose de- 
grees of frecdorn are orthogonal, and khlis d e c o u p l d ,  and 
form a freqnciicy-ordered orthonormal Basis set andogous 
to  the Fourier transform. 

By decoupling the degrees of freedarn we &eve sub- 
stantial advantages: 

a The fitting problem has a simple, efficient, dosed-form 
solution. 

m The model" intrinsic complexity can be adjusted to 
match the nurnlrer of demees of freedom in the data 
measurements, so that the solution can always be made 
overconstrained. 

* When ovcrconstrained, the solation iu nniqri~, pxcept 
for rotational symmr t r i~s  ;ind degenerate conditions. 
Thus the solittion is wll-snited for recognition and 
database tasks. 

Moreover, h~cause thc representation employed is based 
on the Finite Element m ~ t h o d ,  the dynamics of the ob- 
served ohject can bc accurately modeled. As a ronnequence, 
optimal estimates of object motion and shape can be made 
even in non-stationary enviroments, and phynicd predic- 
tions/sirndation c a n  bc made dir~ct lg  from recovrrd mod- 
els. sequence~. 

2.3 Modeling Using Implicit Functions 

It is important t o  have a unified representation for both 
geometric and physical mod~bag .  Our approach is to com- 
bine the modal shape d~forrnxtions drfinrd above with an 



implicit function surface such as a sphere or cube. This 
cornhination ~ i v e s  its the advantage of being able to  ac- 
curatdy and simply describe physical deformations. and 
yet to be able to use t h ~  implicit function rcpresmtation's 
i n ~ i d e - o u i s i d ~  function far contact detection and model fit- 
ting [20, 14, 91. 

In objcct-centered coordinates r = [r,s, tIT,  the implicit 
equation of a spherical surface is 

This ~ q ~ l a t i o n  is also referred to  as the surface's inside 
outside function, h~cause to detect contwt  between apoint  
Xp = [Xp. l',,, zPJT and the vohlrne botmded ky this surface, 
one simply substitutes the coordinates of X into the filnc- 
tion f .  If the result is negative, then the point is inside 
the surface. Cpn~rdizations of this basic operation may 
be a s ~ d  to find line-surface i n t ~ r s ~ c t i o n s  or surface-~iltfate 
intersections. 

A solid &fined in this way can he easily positioned and 
oriented in globd space, hy transform in^ the implicit func- 
tion to  global roordinates, X = [X,Y, 21T we get [ZO]: 

where R in a rotation matrix, snd b is a translation vec- 
tor. Thr implicit frinction's pnsitioncd and oriented (rigid) 
insidr-outs id^ fi~nrtion hecomes h us in^ Equation 7): 

f (r)  = j(??-'(x - b)). (81 

Any s ~ t  of implicit shape functions can be g~neraljzdl hy 
combining thrm with a set of g l o l d  dcformations V with 
parameters m. Far particular v a l ~ ~ ~ s  of m the new deformed 
surface is defined wing a deformation matrix Dm: 

In our system the deformations ilscd are the mod$ shape 
polynornid f~tnrt ions ,  d ~ f i n ~ d  hy transforming the original 
finite element shape fnnctions to the modal coordinate syn- 
t a n  (sw 1161 and Appentlix A of this pap~r) .  T ~ P S C  poly- 
nomials arc a function oi r, Eqi~ation 9 becomes: 

Thc inside-orltsidp function. with nonrigid dcforrnations he- 
cames ( i l s i n ~  Eqlration to): 

f(r) = f (23;;1'(r)7Z2'(~ - b)) (11) 

This inside-oiltsidp flmction 1s d i d  as long a8 t h ~  inverse 
polynomial mapping Z?;{r) exists. In cases whew a set of 
ddormations has no clos~d-form inverse mapping, Newton- 
rtaphson and other nlrmericd i t ~ r a t i v ~  techniques have to  
he 11s~d. 

This mpthod of defining gpornrtry, therefore, provide6 
an inlwrently mom pffici~nt mathrrnatical formi~lation for 
rontart d ~ t ~ r t i o n  than grometric r~pr~aen ta t ions  such as 
polygons or splincs. Sw P~at lanr l  and Williams 1141 and 
Srlaroff and P~ntlanit  1201 for a disci~ssion of the computa- 
tional rornplrxity of rontart r lr t~rt;on dp;orithms. 

Figure 2: A few of the vibrationn mode 6 h a p ~ s  of a cube, 
using idpdizcd deformations 

3 IDEALIZED MODES 

For applications that do not reqt~ire acrttratc physird mod- 
&nx, such as object recognition, we have found that it is 
adequate to use a single set of particularly simple deforma- 
tions derived using idealized elasticity properties. More- 
over, became the elastic properties of the modcl are of no 
concprn, it is s~ifficicnt t o  set to be the identity matrix, 
except for rigid- body m o d ~ n  wluch have zero atiffncss. 

Thp entries of the i d ~ a l i a ~ d  d~iorrnation matrix Dm for 
these irl~a2ized modes are as follows, 

where m = I m ,  m l , .  . . , rn,-IlT is a p x 1 vector of the 
m d n l  nrnp[iltrd~.q, and r = [r, n, ! IT  = i~ t h ~  coordinat~ of 
a point in nndeforrn~d spac~.  

The modal ampl i tnd~s  m, form~llated in this way have 
an intuitive meaning. Modal ampliti~des mo - m5 are the 
rigid body modes of translation md rotation, me - ms are 
the  x, y, and z sizes, mg - rnll are shears about the x, y, 
and z axes and the rest are bends, tapers and pinches in 
various axes. Figure 2 illrtstrates a f ~ w  of these id~alized 
deformation modes for a cube; the reader shotlld compare 
this figure t o  Figure 1. 

4 RECOVERING 3-D MODELS 

Let us assump that we are given rn thrcc-dimmsiond s ~ n -  
sor mpxsnrrments (in t h ~  gE01)d coordinat~ system) that 
oridnate from the surface oi a single olljpct 



JVe then attach virtual springs betwen these sensor mea- 
surement pointa xnd particular nodes on our deformable 
model. This defines an equilibrium equation whose ~olu-  
tion U is the desired fit t o  the sensor data. Consequently, 
for m nodes wi th  corresponding sensor measurements, we 
can calculate the virtual loads R exerted on the undefomed 
object while fitting it to the sensor measurements. For node 
k these loads are  imply 

where 
X = I~~,n,zl~..-~x.,y~,z~]~ (15) 

we the nodd  coordinates of the und~formed object in the  
object'fi coordinate irame. Wben sensor measurements do 
not correspond exactly with existing nodes, the loads can 
be distributed to surroundine; nodes using the intcrpola- 
tion functions used to define the finite element model. as 
described in 1161. 

T h u ~  to fit a deformable solid to  the mexured data  we 
solve the following equilibrium equation: 

where the loads R are ;rs above, the material stiffness ma- 
trix K is as d~scri'tbed above and in [16], and the equilibrium 
displacements U are t o  be solved for. The solntion to the 
fitting problem is simply 

Thp difficulty in calculating this solution i s  the large di- 
mensionality of K, so that iterative sdntion techniql~es are 
normalIy employed. 

However a dosed-form solution is available simply by 
converting this equation t o  the modal coodinate system. 
This is accomplished by snbstitutlng U = +U and prernul- 
ti ply in^ by i p T ,  so that the equilibriiim equation becomes 

whrre R = +IPTlt and K = QiTK+ is a diagoed matrix. 
Again, note that the calculation of iP needs to be performed 
only once as a precomputation, and then stored for all fu- 
turp applications. Further, it i t  normally not desirable to  
use dl of the eigenvectors (as explained below), so that the 
9 matrix remains of managable size even w11en using lirrge 
numbers of nodes. In our implementation 9 is normally a 
30 x 3n matrix, where n is the number of nodes. 

The solution to the fitting problem, therefore, i s  obtained 
by inv~r t ing the diagonal matrix K: 

Note. howcvcr, that .W this formulation is posed in the ob- 
ject's roordinate systcm the rigid hody modes have zero 
eiplcnvalues. and must therefore 'I)c aoived for separately by 

sctting a, = i;, I < i 5 6. The c o m p l ~ t ~  solution may be 
writtpn in the original nodal coordinate system, as follows 

where b i s  a matrix whose first six diagonal elements are 
ones, and remaining elements are zero.' 
The major dific~llty in calculating this aotntion occnrs 

when there are fewer d e p s  of frcedum in sensor memure- 
ments than in thr  nodal positions - xe is normally the case 
in computer vision applications. Previous researchers have 
rummted adopting heuristics such ~JI amoothncss and sym- 
metry to obtain a well-behaved eolution; h m v e r  in many 
cases the observed object8 i re  neither smooth nor Rymrn~t- 
ric, and so an alternative method is denirabl~. 

A better method is to  discard some of the high-frequency 
modes, so that the nnmber of dqr-  of frmdom in u is 
equal t o  or less thm the number of d w e e s  of freedom in 
the Ewaor measurements: To accomplish this, one simply 
row and colnmn rpdllces K, and coltimn rednces 9 so that 
their rank is 1-5 than or equd to the nnrnher of a d a b l e  
spnsor measurement degrees of freedom. The motivation 
for this stratepy ir that: 

When thew are fewer degree8 of freedom in the wnmr 
measurements than in the model, the high-frequency 
modes cannot in any Reuse he accuratp, w there is 
insufficient data to constrain th~rn. Their d n ~  pri- 
marfg rcflect~ the smoothnrss heuri~tic employed. 

+ W e  the high-frequency modes will not contain infor- 
mation, they are the dominnnt factor determinin~ the 
cost of the solution, as t h y  are both numwoufi and 
rqu i r e  the U ~ P  of very small time steps [14]. 

Perhaps the  most interesting consequence of f i ~ c ~ d i n g  
some of the high-frquency modes, however, irs that it allowa 
Eqnation 21 to provide a generically owrconstr;u'ned esti- 
mat* of object shape.  not^ that discarding high-lrqt~ency 
modes is not equivalent t o  a smoothness assumption, as 
sharp corners, creases, ~ t r . ,  can .still he obtained. What 
we cannot do with a redur~d-bmia modal representation is 
place many creases or spikes close together. 

4.1 Using 2-D Contours and Points 

In the cage where we are given only 2-D information w can 
6tiJ.I employ the same equations to estimate shapc, however 
we mast generalize Equation 21 to wfIect the nucertainty 
we have about the t coordinate of ~ a c h  point. Thia can 
be accomplished by altering Equation 22 t o  reflect the fact 
that some sensor measarements arc more certain than otb- 
erc. We accornpliah this by introducing a 3n x 3n diagonal 
wei~ht iag  matrix W: 

'Inclmion oithr mntdx h i a h  Equat~on  21 may rlro be intcrpretrd 
M adding an c%tcrnd l o r e  that conatruna thr scrlution to haw bo 

midud tnnnlak~ond or rotsr~ond ntren-m. 



R.uucr. D;~t;k LIIU~PI Orrlrbr Fit Firid Fit 

Figure 3: Fitting Iwer ran~cfinder data  of a human face. 
Left column: ariginxl rxnpt- data,  Middle column: recow 
 red 3-D morlel using only Iow-order rnod~s,  Left Column: 
full recovpred model. 

The i-lia~ond enirl~s of W WP inversely proportional to 
the uncprltinty (variance) of t h ~  data  x~soc ia t~ t l  with each 
of the norld coordinates. Thp effect of W is to make the 
strength of the vit t t ld springs rr~sociatrtl with each data  
point rpffpct the i lncertintg of thr  m r m ~ i r ~ r n ~ n t .  

4.2 An Example Using 3-D Point Data 

The left-hand irnag~ of Figlire 3 shows an examp?e using 
360' laser ran~ct indrr  data  of a hi~mxn head. There are 
allout 2500 data  points. Equation 21 wu then userl to es- 

timate t h ~  shape, using only t h ~  low-frequency 30 modes. 
The low-order r~covered m o d ~ l  ir shown in the ~niddle col- 
umn: because of the large number of data points execution 
time on a Sun 41330 was approximately 3 s~conds.  It can 
be swn that the low-orcIrr mor l~s  provide a sort of qualjta- 
tivr d~scriptinn of the overall h ~ a r l  shape. 

k fu~ll-dirn~nsionality rrrovrrrtl mod~E is shown in t h ~  
ri~ht-hand i r n a ~ ~  of 3.  In the Tl~ingWorld system 114. 151. 
rather than d ~ s c r i h i n ~  high-frrqurncy surfar~ d~ td l s  nsing 
a finite ~ k m ~ n t  modrl with ns many d ~ g r ~ r s  of f r d o m  as 
thrrp ilf~ rlata points. we nnrmdlv augment a low-order fi- 
nite ptprnpnt modpl with a s p l i ~ u ~  description of the surface 
dptdts. This provides ns with a two-layrr~d r ~ p r ~ s e n l a -  
tion (loaq-ordrr finite element model + snrfarp detJ1 spline 
d~scription = final model) that wv find to I>* 110th more effi- 
ricnt t o  r p r o v ~ r  and m o r ~  useful in recognition. sim~~lation. 
and visualization tasks than a ful ly-d~ta i l~d finite element 
mod~l .  

5 OBJECT RECOGNITION 

Perhaps the major cIrawback of previous shxpc-mod~ling 
techniqu~s is that they kavr not l w ~ n  iia~fril for mcogni- 
lion. cnnrparision, or othrr rlatahxse taqks. Tlli~ is hera~rsr 
t h ~ y  normallv l t a v ~  morp (IFRTPPS of f ~ ~ ~ d o r n  than thew 
arP sPnSor rncxwrpments, so that the rrrovcrp process is 

ilnd~rconstrained. Therefor@, d tho~ lgh  heuristics such aq 
smoothness or symmetry can be uspd to obtain a solution. 
they do not prodilcp a stable, uniqiie solution. 

The major problem i s  that  when the model ha< morp 
degees oi freedom than the data, the model's nodm can 
slip about on the surface. The r ~ s u l t  is that t h ~ r e  are an 
infinite nwnhcr of d i d  combinations of nodal positions 
for any particrllar surface. This difficnlty is common to 
d spline and pieccwise polynomial representations, and i a  
known as the knot problpm. 

For all such rcpreaentations, the only ~ ~ n ~ r a !  m ~ t h o d  for 
determinin~ if two surfaces W P  ~ ~ u j v a j ~ n t  is to g~ncrxte  
a number of sample points a t  corresponding positions on 
the two surfacrs, m d  01)serve the  distancrs hetwrcn the 
two fieha of sample points. Not only is this a tltimsy and 
costly way to determine if two surfaces are c q n i d r n t .  hut 
whm the two s~~rfaccs haw very di f f tr~nt  pwam~t~r i za t ions  
it can also he quite diEc11lt t o  grnerate sample points a t  
"corresponding locations'' on the two surfaces. 

T ~ P  modal r ~ p r ~ s ~ n t a t i o n ,  xsilming that xU rnodps are 
cmplqed, deconples the d e ~ r w s  of freedom, hut i t  does 
not by itsdf r ~ d u r e  the total number of dvgrr~s  oiftwrl~rn. 
Conn~qn~ntFy, a cnrnpl~te modal r~presentatian snf f~rs  from 
t h ~  same proMpms ~5 d of t h ~  o t h ~ r  rrpr~sentations. 

The ohvious solntion to  the prohlcm of non-uniqucn~ss is 
to discard enough of the 1uf;h-frequency mor l~s  that we can 
o h t i n  an ovrrcon~trained estimate of s h a p ~ ,  was done 
for the shape recovery p r o h l m  ahovc. Use of a rctlurrd- 
bhais modal representation results in a ~ r n i q n ~  rrprrsenta- 
tion of shape hecai~se the modcs (ri~envcrtors) form an 
or thanomal  basis set. Therdore, thprp i s  only one way to 
represent an o h j ~ c t ,  and that  is in its canonicd position. 

Further, because f h ~   nodal r~presentation is frcqrt~ncy- 
ordered, it has stabity propertirs that are similar to thaw 
of a Fourier dpcomposition. Just a.9 with the Fouri~r (IPPOIT- 
position, an exart sl~hsarnpling of the data  points points 
does not d i a n ~ a  t h r  low-freq~tency rnod~s .  Similarly, ir- 
rc~ularit ies in local fiampling and rnexrircment noifie tond 
t o  primarily affect t 1 1 ~  higI1-fr~qt~ency rnotlcs. l r a r i r i~  the 
low-frequwc y modes relatively unchan~ed.  

The primary limitation of tlus uniqu~nesr: property stems 
from the linearization of rotation. D ~ c a u s ~  tlrp rotations 
a ~ c  linearie~d, it is impossithe to  uniqurly d ~ t ~ r n i i n o  an nh- 
ject's rotation statr .  As a consrqlicncp ohjpct symrn~tries 
can lead to mul t ip l~  descriptions, and errors in n~rx~nrinc 
object orientation will cause commensurate errors in shape 
desription. 
Thus by employing a red~trpd-basis modal rcprcsmtation 

we can  obtain overconatrain~d  hap? ~ s t i m a t r s  that are also 
unique e x c ~ p t  for rotational syrnmctri~s. To rompare oh- 
jcrts I and I; with known modc v d u ~ s  0' anrl u'. nne 
simply compares tlir two vertorq of modp d i ~ ~ s :  

Vector norms otlwr tlmn the dot product ran dqo Ije t-m- 
ployed; in o w  e x p ~ r i e n c ~  all g i v ~  rori~ld!: t110 sani* rwog- 



nition accuracy. 
To recognize a recovered model with estimated mode val- 

11~s  a one cornpares the recovered mode d u e s  to  the mode 
values of all of the p known models: 

The known model k with the rnaKimnm dot prodnct rk is 
the model best matching the recovered model, and thua 
declared to be the model recopized. Note tha t jo r  each 
known model k, only the vector of mode values U' needs 
to he stored. 

The first s i x  entries of & are the rigid-body modes ( t ram- 
Iation and rotation), which are normdly irrelevant for ob- 
ject recognition. Similarly, the seventh mode (overall rol- 
ame) is sometimes irrelevent for object recognition, 98 

many machine vision techmiqnes recover shape ody up to 
an overall scde factor. Thus tath:r than computing the  
dot product with all of the modes U, we typically use only 
modes number eight and higher, e.g., 

where m is the total number of modes employed. By use 

of this formula we obtain translation, rotation. and scale- 
invariant matching. 

The ability to compare the shapes of even complex oh- 
jects by a simple dot product makes the modal represen- 
ration well suited to recognition, comparison, xnd other 
database tasks. In the following section we will evaluate 
the reliablity o i  the combined shape recovery/recognition 
process. 

5.1 Recognition: 3-D Data 

To assess accuracy, we conducted an experiment to  rwover 
and recognize face models from rangc data generated hy 
a laser range f ind~r .  Zn this experiment we nhtained h e r  
ran~efinder data  of eight pmplc's heads from a five different 
view in^ directions: the right side (-9O0), halfway between 
right and front ( - 4 5 O ) ,  front (0°), halfway between front 
and left (4s0), and the left side (90°). We have found that 
 people*^ heads are only approximately symmetric, so that 
the f4S0 and f 90- degree views of each head have  quit^ 
different detailed shape. Ln each case the range data  was 
from the forward-facing, visible surface only. 
Data from a 360° scan aronnd each head waa then used 

to  form the stored model of each head that was later used 
for recognition. Full-detail ver~ions of these eight reference 
models are shown in Pi~are 4; note that in some cases a 
significant amount of the data is missing. As pteviously, 
only the Tow O T ~ P T  30 d~fortnation modes were used in t h ~  
iihap~ extraction and recognition p roc~d t~re .  Because the 
low order modes provide a coarse, qualitative atimmary of 
t b ~  object shape (see the middle column of Figure 3) thry 
cxn  br rxpccted t o  he the most stal)le with respect t o  noise 

Figure 4: Eight heads used in our recognition experiment. 
Note that in some cases there i6 significant missing data. 

F i w t e  5: Recognizing faces from five different points of 
view. 

and viewpoint change. Total execution time on a standard 
Sun 4/330 averagd approxjmately 5 seconds per fitting and 
recognition trial. 

Recognition was accomplished by dret r ~ o v e s i n g  a 3-D 
model from the visiMe-aurfare range data, and then com- 
paring the r~coveretl mode values to the mode d u e s  stored 
for each of the three known head models using Equation 
25. The known model producing the largeat dot product 
was declared to  be the recognized ohject. The first spven 
modes were not employed, so that, the recognition process 
was translation, rotation, and scde innr ia t .  

Figure 5 illustrates typical resultfi from this experiment. 
The top sow of Figure 5 illustrates the five modds recov- 
ered from range data  from the front, visihlr surface nsing 
viewpoints of -go0, -45", QO, 45', and 90". Each of these 
recavered head models look similar, and more importantly 
haw approximately t h ~  same deformation mode d u e s  fJ, 
despite t h ~   wid^ variations in input data. Modw 8 tllrotrgh 
30 of these recover~d modcls were then compar~d to  ewh 



2 Contours 3 Conto~irs 5 Contours 

Fimre 6: Set of contour w u p s  used in head recognition 
from contours example. These contours weTe taken from 
the sarne head depicted in F i g u r ~  3 (Head c in Figure 4). 

of the stored head models. The dot products obtained are 
shown helow each recovered head model. 

In Figure 5 all of thc input data  was views of Kim (de- 
pict~(! X< "head C" in the tahles). As can he seen, the dot 
products between recoverer1 3-D model and known model 
a r ~  quite large for Kim's h ~ a d  model. In fact, in this exam- 
ple the srnall~st correct dot product i~ a h o s t  t h r w  times 
the magnitude of any of the incorrect dot products: the 
same wa also true for range data  of the other subjects. 

In this experiment 92.5% accurate recognition was oh- 
tained. That  is, we snrcessfully rwovered 3-D models and 
rccopized each of the e i ~ h t  test subjects from each of the 
five diffwcnt v i ~ w s  with only thrce errors. Analysis of the  
rcrognition results showed that ,  while the average dot prod- 
uct hctween different reference models was 0.31 (7Z0), the 
average dot product betwwn models rerovered from differ- 
ent views of Z ~ P  same person was 0.95 (IS0). Thus recogni- 
tion was typically ~ x t r e m ~ l y  certain. All three errors were 
from front.fxcing views, w h e w  relatively few discriminat- 
inc f~a tu rcs  arp visible; r~rnemher that only overall head 
shape, and not details of surface shape, were available t o  
the recognitinn procedure only 30 modes were employed. 

5.2 Recognition: 2-D Data 

In a sirnilar head rrcovery and reco~nition experiment, we 
nspd a few 2-D h c d  contours instead of fulI rnnge data  to 
sw how well our techniqll~s performed in the carp of sparse 
silhoucttc data. In this experiment, we recoverptl heads 
from 2, 3. and finally 5 contours, in order to  approximate 
the information avililahle in an active vision scenario. In 
~ a c h  trial, the contours werP spaced ev~n ly  in rotation. An 
example of the contours used in this experiment i s  shown 
in Fignrc 6; these contours were taken from the same bead 
depicted in Figure 3 ("head c" in F i ~ u r e  4). 

As in t h ~  PTPV~OUS exp~t iment ,  the recovered heads were 
cornpard against the f~ifl-detail versions of the tpferente 
hrads shown irt F i g n r ~  4, and the rnodel producing the 
largest dot product wxq dcclar~d to be the recognized oh- 
jpct. Heads wcre compareti i~sing the scale, rotation. and 
translation invariant matching of Equation 25. 

In o ~ r r  ~xp~r imt in t s  with two contonrr;, recognition accu- 

racy av~raficrl 93.75%. Arcuracv improved M rnorc con- 

tonrs were added until 96.875 p ~ r c e n t  of the heads were 
correctly identified when 5 contours were used. The r e  
sdts were not as good if the contours did not indurle t h ~  
traditional ~ i d e  usilhouette," and performed best n p h ~ n  tbe 
data's spring attachment WM smoothed out more across 
the surface. Total execution times were slightly ~ r e a t e r  
than those for the full data  rxper im~nt ,  averaging 5 seiec- 
onds per fitting and recognition trial on a Sun 41330. The 
greater execution time is attributable to the more carefril 
distribution and smoothing of spring attachment betwwn 
conton~s and the underlying deformable model. 

6 DYNAMIC TRACKING 

In the previous sections we have addressed static shape 
~s t imat ion and recognition. For seqilences, how~ver.  it. is 
necessary to also consider the dynamic properties of the 
body and of the data  measurem~nts. The K h a n  Nter is 
the standard technique for obtaining estimates of the state 
vectors of dynamic models, and for predicting thp state 
vectors at some later time. Outputs from the Kalman filter 
are the optimal (weighted) least-squares estimxtp for non- 
Gaussian noises. 

Kxlman filtering has hwn used in many motion ~atirua- 
tion applications [6, 101, hut normally it is both too Pxpen- 
sive and requires too much storagp to apply to thc large 
number of tariabhs typical of a whole-body finite clcment 
model. However, hecause the modal repres~titation allows 
us to snmmwizc the dynamic state of tbc body with only 
a s m d  nrirnber of parameters, d~velopment of a Kalma 
filter is straightforwilrd. 

Because of spacr limitations, WP will forego the drtailed 
development of the Kalman filter eqnations. Readers intpr- 
ested in this detail are rcfcrred to references 117. 18, 11. 

6.1 Tracking Examples 

Figure 7(a)  shows one frame from a sequence of X-rav jm- 

ages, with the zero-crossing edge cantours ov~rlayed. From 
these contours the 3-D shapt w n ~  estimated using Equa- 
tion 22. The resulting shape is shown in F i g ~ t r ~  7(h) a 
3-D wirehame overlay~d on the original X-ray data. Fig- 
nre 7(c) shows the r ~ c o v ~ r e d  n o d ~ l  from the side. Because 
only bounding contour information was available, t h ~  ahapc 
estimated along the r axis (shown in Figure i(t)) is deter- 
mined by finding the minimum stress state that still fits the 
baunding contour. The z-axis shape cannot, th~r~fmre.  be 
regarded as accurate but only xs plausihle and ronsist~nt.  
Note that use of a minimum stress criterion for snlotion 
means that  symmetric and mirror syrnm~tric shapes arr 
preferred. Execution time was approximately one sprond 
on a standard Sun 41330. For additional detail see i'cnt- 
land and Sclaroff [16]. 

Figure 8 shows xn exampl~ of recovering non-rigid motion 
from contour information. Thp 3-D shape and motion of 
the h ~ a r t  ventricle was tracked over time using thr contnilr 
information shown at thp top within each box of E i a i ~ r ~  8. 



Figure 7: An example showing the use of a 2-D image con- 
tour to  recover a 3-D deformahle solid model. The original 
image and contour are shown in (a). The model is recov- 
ered from the contonr as shown in (b). An orthogonal side 
view is shown in (c). 

For each frame Equation 22 was used to  obtain an estimate 
of 3-D shape from the contour infomation (bee Figure 7). 
These shape estimates were then integrated In a Kalman 
fdter fornulation, as described in Pentland and Borowitz 
11 71. As in the single-ima~e ewe, deformations along the 
r axis are determined by finding t h ~  minimum stress state 
that still fits the bounding contour. The z-axis deforma- 
tions cannot, therefore, he regarded as accurate bot only 
as plausible. Exrcution time was approximately one second 
per frame on a standard Snn 41330. 

Fippre 9 illustrates a more complex example of tracking 
rigid and non-ribd motion. This fipu~ shows three frames 
from a twelve image sequence of a well-known tin woods. 
man caught in the act af jumping. Despite the limited 
range of motion, this example is a difficult one because of 
the poor quality opticd Row, due to pranonnc~d highb~bts 
on thighs and o t h ~ r  parts of the body. 
In this example an articulated 3-D model was constructed 

by hand, with spring-like attachment constraints inserted 
between the various body  part^. In t h i ~  manner the com- 
bined behavior of the various p x t s  were constrained to be 
consistent with the physics of the situation: parts must 
stay connected, movement by one part causes an equal but 
opposite rcactiona among the other parts, and inertia is 
conserved. 

U'e then cdrtdated optical flow by use of a block-wise 
Horn-Schunk algorithm, and then our Kalman filter formu- 
lation ilsed to estimate the motions of the various parts. 
The betwen-part attachment constraints then introduce 
additional forces that enforce the conservation of force and 
in~r t ia .  All of thew forces are then integrated to produce 
a final physically-consistent estimate of the overall motion 
at each instant in tine. 
The estimated motions for this sequence are illustrated 

by the bottom mw of Finire 9. As can be seen by compar- 
ing the 3-D motion oi the model with that in the oribind 
image, thr  resulting tracking is reasonably accurate. For 
additional information, see r ~ f e r e n c ~ s  [17, 181. 

6.2 A Computer Graphics Application 

Figure 8: A heart's nonrigid motion as it w k ~  recovered 
from contoms taken from a motion sequence. The contours, 
extracted via a simple threshold and zero crossinb scheme, 
are shown along the top. The deformable model r ~ c o v c r ~ d  
from these contours is shown in wireframe. 

Figure 9: Three frames from an image sequcnce showing 
tracking of a jumping man nging an atticulatcd, physically- 
h w d  model. Note that despite poor quality opticd Row 
[due t o  pronounced h i ~ h l i g h t ~  on  thigh^ and ather parts of 
the body) the overall tracking i~ wasonably atcurat?. 

Most int~tact iw cornputrr applications require harnessing 
the oaer with wirr-s. This detracts both from the enjoyment 



Vinurl Holography 
Applrcat~rm -El FbQ mrpl.7 

Ttlt~onftrenc~n~ 

F i g ~ l r ~  TO: System organization 

d t h ~  e x p ~ r i ~ n c e ,  and from the practicality of the system 
for day-to-day use. XVc hare therefore used our tracking 
t~rhniqaes  to  develop a completdy passive system that  pro- 
vides "real-time" estimates of position and orientation, in 
a manner similar to the Polh~mus sensor, hnt without the 
wires. 

Our system U S P S  a single CCD camcra to  estimate the 
low-arder rip;id-hody modes. In initial testing, our system 
has shown itself to he competitive in accuracy with the 
Polhcmua sensor. Onr systrm has no far h ~ e n  applied only 
to  the problem of tracking t h ~  user's h ~ a d .  however there 
is nothing in the formulatinn that is spprific to the human 
head. 

We have used this system in fwo separate applications: 
virtitd holography. and teleconferencing. In the virtual 
holography apptcation, a stereoscopic display is controlled 
by the user's h p d  position so that the user sees an appar- 
ently fiolid o h j ~ r t  llefor~ him. He can look "around the 
display~d ohjects. and see what they look like from various 
viewing positions. In the teleroni~rencing application, the  
user's hcad position is t r ack~d ,  and nsed to control display 
of a 3-D model of the user's h ~ a d  t o  other teleconference 
participants. 
In both applirationa there is a r~qn j re rn~n t  for precise 

synchronization of action (display) with the ~xter ior  physi- 
cal statP (users head position). Wc have d~velaped acombi- 
nation of dataflow techniqi~m anrl optimal linear prediction 
to obtain close synchronization hctwcen uaPr movement and 
computer genpratpd display, as is Ul ls t ra t~d in Figure 10. 
This organization also allows the system to  be distributed 
across sever& different rompi~ting ~ngines.  

Figure l l(a)  illustrates thc system oprrating in the vir- 
tual hnIoppphy rnod~. In this node t h ~  h ~ a d  position is 
tracked and rlsed to  control a st~rmgsaphic display, thus 
simidating the ~ x p c r i ~ n c e  of +wing a real ohjcct. Note 
t h ~  camma plarpd on top of the computer monitor; this is 
the snle input to the system. 

F i ~ i ~ r e  l l ( b )  comparps the accuracy of the Folhcmns sen- 
sor and our Kdrnan filter for tracking head position; the 
Kalman filter output has bwn ralitsrat~d to  the Polhcmus 
output. The hotizontd axis is time. and the vertical axis 
i a  the +-coordinate of a u s ~ r ' s  11~ad  rrq he mows ahout in a 
g ~ n ~ r a l  mannpr (inrlrtding head rotations). The solid line 

Figure 11: (a) TIlc head tracking system in virtual hologra- 
phy mode, note camera a t  top of monitor. (h)  Comparison 
of Polhemus and Kalman filter estimates of head position. 

is the Polhemus estimate of position, the d m b ~ d  line tEw 
Xalman filter estimate of position. 

As can he seen, the Kalman and Polhcmns rstinlatrs of 

position are q~ l j t e  similar. At the start tbr  Kalman fil- 
ter has no  information ahout hear1 position, jrtst an initial 
guess. Once the head startn moving, the estimates qilickly 
converge to  the carrprt vali~e. Although this is a vrry lim- 
ited data sample, it is sufirient to form an initial estimate 
the K h a n  filter's accuracy. Taking the Polh*m~~s sen- 
sor's output as the " t r~w" position signa!. t hen the signal- 
tc-noise ratio of the Kalman filter output is 22dB (0.6 % 
error). This is comparahl~ to thr advertised signal-to-noise 
ratio of the Polhem~~s sensor. 

7 SUMMARY 

We have described im cfficient method for recover in^. rpc- 
ognizing, and tracking 3-D soIid models using rither 2-D or 
3-D seasor mewarements, Ilecaus~ the recovcrrd 3-D s h a p ~  
description is uniqut. except for rotational ~yrnmetries, w~ 
may efficiently measure the  sirnilar~ty of different shapes 
by simply calcillating normalized dot products betwern tllp 
mode values 0 of varioits ohjprts. Sr~ch comparison?. may 
be made position, or i~nta t ian  and/or size ind~pendcnt t)y 
simply ~xduding the first sewn mode amplitudes. Thus 
the modal representation sperns lik~Ev to he usrfd for ap- 
plications such as o h j ~ r t  rwo~n j t ion  and spatial datahxqp 
search. 

The major weaknesses of oilr current m ~ t h o d  are 

0 Thp nwd to estimate initid oh jrrt oripntation to 



within f 15', as in our formulation rotational variation 
ha< heen lineaxized. 

The need to segment data into simple, apprdmateIy 
convex "blobs" in a stable, viewpoint-invariant man- 
nrr. 

In the current implementation of our system we use a stan- 
dard method-of-moments t o  obtain initial estimates of ob- 
ject orientation, and a minimum description length t d -  
niqne to produce segmentations 171. We are now work- 
ing to integrate the segmentation procedure of Dickin- 
son, Pentland. and Rosenfeld IS] to produce an integrated 
segmentation-fittinerecognition system. 

References 

[I] Azarbay~janl, A., Stamer, T., Horowitz, B., Pent- 
land, A., (1992)"hteractive Graphics FViVlthout The 
Wires," IEEE l lan. Pattern Analysis and Machine 
In tellimce, special issue on computer gaphicr and 
viqinn, in press. 

[2] K. Bathe. Finite Elemenl Pmcedures in Engineering 
Anolysw. Prentice-Ha, 1982. 

131 B~rgevin, R. and Levine, M. (1989) "Generic Oh- 
jcrt Recognition: Building Coarse 3D Descriptions 
from Line Drawingn, Proceedings, IEEE Workshop 
on Interpretation of 3D Scenes, Austin, TX, Novem- 
ber 1989. pp 68-74. 

(41 1. Biderman. Recognitian-by-Com~nents: A The- 
ory of Human h a g e  Understanding. P.~ychoIqical 
Review, 94(2):115-147* 1987. 

[5)  T. Binford. Visual Perception by Computer. Pmaented 
a! The TEEE Conference on Sy8tem.o and Contml, De- 
cember 1971. 

[6J T. J. Broida and R. Cheflappa. Estimation of Object 
Motion Param~ters from Noisy hages ,  IEEE Tmns. 
Pnllern Analysis and M n c h i n ~  Inlelltgence, 8(1):90- 
99. January 1986. 

[TI  T. Dwell ,  S. Sclnoff, and A. Pentland. Segmentation 
by Minimal Description. In P m .  Third Int~ma~iunal  
Confewnc~ on CornpuE~r Vision, December 1990. 

[B] Dickinson, S., Pentland, A., and Rosenfeld, A,, (1992) 
From Volumes to Views: An Approach to 3-13 Object 
Reco@tion, C V G P :  Image Vnderstanding. Vol. 55, 
No. 2, March, pp. 130-154. 

(91 I. Essa. Contact D~teeEion, Colhsion fomes and 
Fn'cl ton j o t  Pf~ ysimlly-Bmed ViriunI IVorlri Modeling. 
Mmter's thwis, Dept. of Civil Engineering, M.I.T., 
1990. 

[lo] 0. D. Faugeras, N. Ayache, and B. Faverjon D d d -  
ing Visual Maps by Combining Noisy Stereo Mcasttse 
meats, P w .  lEEE ConJ. an Robtics and Auiomnlion, 
S;m Rancisto, CA., April 1986. 

[I21 R, Mohm and R. Nwatia. Using P ~ r c ~ p t u a l  Orgnni- 
zation to Extract 313 Structures. IEEE Taw. P a i t ~ m  
Anolyaia and Machine Inlet l tg~nce,  31(11):1121-1139, 
November 1989. 

[13] A. Pentiand. Perceptual Organization and Repre- 
sentation of Natural Form. AriifiiaI Intelligence, 
28(5):293-331, 1986. 

1141 A. Pentland and J .  Wiams.  Good Vibrations : Modal 
Dynamics for Graphics and Antmation. Computer 
Cmphics, 23(4):215-222, 1989. 

[15) A. Pentland. Automatic Extraction of Deformable 
Part Models. Inicmalionnl Journal of Cornpuler VT- 
sion, 107-126, 1990. 

I161 Alex Pentland and Stan Sdaroff. Closed form soln- 
tians for physicRUy based shape modeling and recov- 
ery. IEEE Tmnn. Pattern Annlysk and Machine In- 
telligence, 13(7):715-729. .Inly 1991. 

1171 Alcx Pentland and Bradley Harowitz. Recovery of 
nonrigid motion and structnre. IEEE Tmna. Pat- 
lent Anoiysis and Machine fntelEigenrc, 13(7):730- 
742, Jidp 1991. 

(181 Alex Pentland, Bradley Harowitz, and Stan Sclwofi. 
Non-rigid motion and structure from contour. In IEEE 
Workshop on Vi~ua l  Motion, pages 288-293. IEEE 
Computer Society, 1991. 

1191 F. Solina and R. Bajcsy. Recovery of Parametric Mod- 
ds from Range Images: The Case for Superquadrics 
with Global Deformations. JEER Tans. P n I l ~ r n  Anal- 
ysie and Afaclline Intelligence, 12(2):131-147,1990. 

1201 Stan SclarofE and Alex Pentlhnd. Generalized implicit 
functions for computer graphics. Computer Cmphics, 
25(4):217-250, 1991. 

[21] D. T~rzopodos, A. Witkin, and M. Kass. Symmetry- 
Seeking Models for 3-D Object Reconstnlction. 
Ln Proe. First Confemnre on Computer Vision, 
pages 269-276, London, England, Dec~mher 1987. 

[22] Demetri Terzopoulm and Dimit~i Metaxas. Dynamic 
3d models d t h  local and global deformations: De. 
forrnahle superqnadrics. IEEE Thns. Pallern Anol- 
ysis and Machine I n l ~ l l i g ~ n r e ,  13(7):703-714, July 
1992. 




