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ABSTRACT

We here present a solution to a common problem in
IMV, i.e. to identify and estimate the orientation of
touching mechanical parts on a plane surface.

After an initial thresholding step, we use a distance
transformation to create a distance map. We separate
the objects by using watershed segmentation on the
distance map. Some objects may be segmented into
several parts, For every segment and every hole we
caleulate the centre of gravity for its surrounding edge
pixels. By this we have an estimation of the orientation
of the objects. For the objects that consist of only one
segment without holes, we construct a circle around
the centre of gravity. We plot the values of the distance
map on this cirele line as a function of the angle
and identify its maxima and minima, For the overall
control algorithm we use fuzzy logics.

To verify the identification and to get a better esti-
mation of the orientation of the objects, we finally do
an edge matching using the distance map which gives
us quantitative measurements of how well the edges
match., This will give us more accurate estimations
than can be achieved by statistical methods,

Laboratory tests have shown that our algorithm
will perform quite well on the shop-floor under certain
restrictions about the distance between the camera
and the objects.

MATCHING

Edge matching : In order to determine the orientation
of objects we want to match the edges of an object in
an image with the edges of the same object in a refer-
ence image. We do that by translating and rotating one
of them until its edge pixels match the edge pixels of
the other image as well as possible. As measurements
of the distances between the two sets of edge pixels we
use the method reported by Barrow et al’. One of the
edge images is first transformed into a distance map
with some distance transformation, i.e. the chamfer
algorithm, see Borgefors 2,

To compute the distance transformation for an
image with edges, we calculate the distance from every
pixel to the nearest edge pixel. Let us call the list of
edge pixel coordinates we get from transforming and
rotating them the Pattern Set.
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We define an Edge Matching Function (EMF),

which we use to measure the similarity between fwo
edges. Since we are dealing with distances a weighted
Euclidean norm seems to be a natural choice. The
value of the EMF gives an estimation of the mean
distances between the edge and the pattern.
Iterative search method : Since the iterative search
for minimum is the most time consuming part of the
algorithm, it is important to find an efficient search
algorithm. Finding a good match is the same as finding
a minimum in the Edge Matching Function, i.e. we
have a nonlinear optimization problem. We shall write
the problem as an overdetermined nonlinear system
and then use the Gauss-Newton method to solve it.

The Gauss-Newton method assumes that we have
several functions, all approximately equal to zero and
that each of them is a function of several variables.
The Gauss-Newton method will try to minimize every
single distance between the Pattern Set and the edges
of the object, in contrast to the EMF which will be
based on the square root of the mean value of the
squares of the distances. This will cause a small bias
in the optimal position.

Ideally we will continue an iteration until AEMF
is equal to zero, but since the Pattern Set always is
moved to an exact pixel position a value of zero is
normally not possible to achieve. If we had a continu-
ous function to minimize instead, the value of AEMF
would decrease, when approaching a minimum. In our
case it will decrease until it is close to the minimum,
when suddenly it will increase. This is due to the
change in shape of the Pattern Set on translation and/
or rotation. We can use that as a sign to stop the it-
eration, because from that point the behaviour of the
iteration is hard to predict.

Our algorithm shortens the computation time con-
siderably compared with the fastest algorithm found in
the literature, The small bias can be corrected by using
some other method as a last correcting step. Even with
this change the method is more than twice as fast as
other methods. For more details abont this iterative
edge matching method see Orbert ”.

Ideas for improvement : Even with a very good search
algorithm we will not be able to reach the global best
match from every start orientation. but only from



those who are in the neighbourhood of the global best
match. How close we have to be is determined by the
shape of the object. The very first and generally safe
method is to check every orientation all over the image
in order not to miss the global best match. This would
however lead to extremely long cpu time.

The things that are invariant between the two edge
images will depend on the situation we are working
with. Our algorithm is intended for a robot which is
to pick up some mechanical parts from a horizontal
and plane surface for an assembly task. We can also
manage the camera the way we want and hold it in a
known position perpendicular to the surface. We also
assume no overlapping of the mechanical parts in the
images, but we will allow them to touch each other.

With all these arrangements we will have an edge
matching of objects that are just translated and ro-
tated in the image plane. We will try to calculate the
orientation of an object by using characteristics from
its outer edge and holes. It will be sufficient to do this
aceurately enough to be good as a start orientation for
the iterative search for the global best match.

WATERSHED SEGMENTATION

A common problem with binary images generated by
a segmentation algorithm is to split the domains into
smaller ones in a controlled way. While it is easy to
do this interactively by drawing lines in the image
it is a much more difficult task to formulate rules
for this operation in a computer language and thus
automate the procedure. The domains that need to be
split may be caused by touching parts or by objects
with complex shapes,

We have used a watershed sefmentation algorithm
veported by Vincent and Soille as the base for our
algorithm, in fact we have just done some small, but
important, modifications of their algorithm for our use
of this method.

The algorithm of Vincent and Soille is fast because
it sorts the pixels according to their values. After the
sorting phase all pixels of the objects belong to a
cluster depending on their distance to the nearest edge
pixel. Vincent and Soille have in their algorithm tried
to label as many pixels as possible as belonging to
the different segments and to avoid labelling pixels as
belonging to a watershed line. In many applications it
is more important to know the watershed lines exactly
than the segments.

We can easily change the algorithm to mark the wa-
tershed lines better, by adjusting the rules for labelling
pixels. We just let the pixel belong to a watershed line,
if at least two neighbours belong to different segments.

We have now made the watershed lines as con-
nected as possible, but we have too many different seg-
ments. By examining the value of each pixel that has
been labelled as watershed and comparing it with the
minimum value of the most recently labelled segment
of those that are neighbours to the watershed pixel,
we will get a difference between them. This difference
should exceed a certain threshold value, otherwise we
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will relabel all pixels belonging to that segment includ-
ing the watershed pixels,

In some applications (eg our) it is important that
the watershed lines are identical regardless of the ori-
entation of the object. In general they will not be iden-
tical due to the digital approximation of the spatial
domain of the image and thus cannot be corrected
in the procedure of the watershed segmentation. We
will instead correct it by selecting the pixels of the
contour which are closest to the pixels at each end of
the watershed line. From these two pixels on each side
of the “waistline” of the object we perform an itera-
tive search for the two pixels that have the shortest
distance between themselves, still being on each side
of the object.

Qur modifications to the algorithm of Vincent and
Soille will give us an algorithm that preserves the
shape and the number of segments better. In figure 1
below we can see how our modificated algorithm will
work on an image with three touching objects.

PRELIMINARY ORIENTATION

After we have extracted the objects in the image
and applied the watershed segmentation algorithm de-
scribed above, we have to identify the objects in the
image. For each segment we calculate the maximum
value of their distance maps and their peripheries. If
the objects contain more than one segment, we cal-
culate the distances between their centra of gravity.
For objects with holes we calculate the length of the
peripheries of the holes and the distance between the
centra of gravity of the holes and the centre of gravity
of the segment.

We have used fuzzy sets, first presented by Zadeh*
in 1965, to implement an identification procedure.
In this we calculate a normally distributed fuzzy set
around the value of each parameter mentioned above
and use the minimum rule to get the fuzzy number of
the probability that we have a certain object in the
image. For more details about the theory of fuzzy sets
and its applications we refer to Terano et al®,

When we have identified an object, we must es-
timate a good orientation of it in order to reach the
global minimum of the Edge Matching Function. For
objects consisting of two or more segments the centre
of gravity for each of them will be enough to get a
good estimate of its orientation. Also for objects with
a hole we can easily find an estimate from the centre
of gravity of the hole and that of the segment.

To be able to estimate the orientation of objects
consisting of just one segment without holes we have
developed a new tool, which we call the Circle Profile.
We create this by constructing a circle that has a radii
equal to the maximum value of the distance map inside
the segment and is centered at the centre of gravity of
the outer contour of the segment. Then we plot the
value of each pixel in the distance map that belong
to the periphery of the circle as a function of the
angle between the radii drawn out to the pixel and
the horizontal axis of the image.



Figure 1. An image of three objects, where the
pizels of the watershed lines are shown in black.

The Circle Profile will have a unique shape for
every object. We use the position and value of the
maxima and minima of the Circle Profile in addition
to the calculated value of the derivatives around those
points as parameters for estimating the orientation.

A perfectly square object, for example, will of
course not give one unique rotation, instead we get
four symmetrical rotations. In cases like this we have
to accept that there will be more than one possible
start orientation for the matching algorithm.

Another case is when we have a perfectly circular
disc, which will give us no unique direction in rotation
at all. But in this case we know that it is a circular
disc we are working with, because no other object will
act like that.

RESULTS

We have done many laboratory tests on objects with
different shapes and in varying degrees of contact. The
results have been similar to the example in figure 1 and
the figures in table 1, which we therefore consider to
be representative for the algorithm.

Table 1. Figures of the example shown in figure 1

Object 0y, EMF X Y ] EMF
Disc 87.3 076 03 -0.2 -87.2 0.70

Banana -167.1 093 05 -0.7 -169.4 0.60

2 Segm  -103.4  0.83 -0.1 02 -1049 0.65

In the left half of table 1 we have the figures of
the preliminary locations and in the right those of
the best match. From those figures we can see that
the preliminary orientations of the objects are very
close to the best matches. The translations shown are
caleulated from the centre of gravity for each object.
For more details about our algorithm see Orbert .
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LABORATORY EXPERIMENTS

So far we have assumed that the objects are laying
on a flat surface, and that the camera is mounted
in a position perpendicular to the surface. The intial
experiments were done using paper silhouettes scanned
by a flatbed scanner (Canon CLC 500), which gives
a perfectly orthogonal projection. But what happens
under more realistic conditions with 3D objects viewed
by a camera? If the distance between the camera and
the surface is large the situation will be equivalent to
an orthogonal projection, but for use on the shop-floor
we need to know how the camera distance is related
to the accuracy of the estimate of the orientation for
the objects our algorithm gives,

In figure 2 below we can see that the position
of the objects in the image determines how much of
the objects’ sides we see. This is best seen from the
cylinder in the upper right corner and the cylinder to
the right in the centre, which both have a height of
40 mm. The cylinder in the lower right corner is just 5
mm high, so we can not see the sides of it, The eylinder
in the upper left corner is 10 mm high and the one in
the centre to the left is 20 mm. All cylinders have the
same diameter, 18 mm.

An image of five eylinders with different
heights and distances to the image centre. The dis-
tance to the camera from the plane 1s {6 cm.

Figure 2.

From this image, and also from basic geometry,
we can understand that the size of the projection
of the sides of the objects in the images is inversely
proportional to the distance to the camera, but the size
is also proportional to the distance between the object
and the centre of the image, and also to the height
of the object. We can than formulate an equation
consisting of the parameter mentioned above as

a=px D/(h x R), (1)

where p is the proportionality factor, a is the distance
between the optical axis and the centre of the object,
D is the distance between the camera and the plane
surface the object are laying on, k is the height of the
object, and R is the resolution in the image.



We have tested this by applying our algorithm
on the cylinders in figure 2 with different distances
between the camera and the objects. We must also
have in mind the practical use of the value of the EMF
in our algorithm, when we choose it. Let us assume
that 64 % of the pixels we use in the Pattern Set have
the value 0 and the rest have the value 1. That will
give us an EMF value of 0.6, a very good match. If we
instead have equal amount of zeroes, ones and twos we
will end up with a value of appoximately 1.3. Thus we
consider the estimate of the orientation performed by
the algorithm inaccurate when the value of the EMF
is larger than 1.3 for the final match,

With that as a criteria to decide when the distance
to the centre of the camera is at its maximum for the
cylinders, we could calculate the proportionality factor
p in equation 1. The two cylinders in the centre of the
image in figure 2 and the one in the upper left corner
are placed at distances where the value of the EMF is
approximately equal to 1.3,

From our experiments we can conclude that we can
estimate the proportionality factor p to 5.5.

PRACTICAL CONSIDERATIONS

Let us consider what it would mean in a real life situa-
tion. Let us assume that we have a plane surface sized
0.5 mx 0.5 m, and an over-looking camera mounted 2
m above the surface. For simplification reasons assume
that the resolution of the camera is 1 pixel/mm, and
that the object distance from the optical axis is no
more than 35 em. Equation 1 tells us that the height
of the object need to be less than 32 mm. A higher
camera position will allow even higher objects.

If we want to estimate the orientation of the object
still better, we can for example do that by mounting
a camera in the robot arm. and iteratively move the
camera until the centre of gravity of the object in
the image coincides with the centre of the image, and
in that way get rid of effects due to varying camera
angles. Let us assume the resolution of this camera is 5
pixels/mm. By using equation 1 again we can conclude
that we need to move the optical axis of the camera to
a position less than 14 mm from the centre of gravity
of the object.

Equation 1 expresses the worst case in the sense
that it assumes that you really see the sides of the ob-
Jjects. In our experiments to determine the proportion-
ality factor p we had to work hard with light mounted
beside the scene to see the sides. This difficulty is also
evident in figure 2 above, where the sides of the cylin-
ders are hard to see. With the diffuse light that should
be used this effect will be less significant.

In equation 1 we have assumed that the shape of
the object change only because the sides of it will be
visible in the image. This is not true, because the
shapes of the objects will change, even for a very
thin object, when it is moved out to the edges of
the image, because of the changed viewing angle. A
perfectly circular dise will appear oval for example.
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But to be able to handle 3D objects one should use
a camera mounted as far away as possible i.e. with a
very narrow viewing angle of the scene as shown above.
Because of that we have not been able to measure any
change in the shapes of the objects due to this effect.

CONCLUSIONS

Owr main purpose with this work has been to show
that it is possible to use the edge matching technique
with distance maps to determine the orientation of
objects for industrial applications. We have shown that
our algorithm can manage almost any kind of shape
of the objects, if we just can segment the objects from
the background. The objects may touch each others.

Our algorithm can not handle objects where the
only clue to the orientation is the structure on the
surface of the object, for instance a coin. For such ob-
jects we need a separate approach to find the rotation
using the edges inside the object.

The laboratory test of how well our algorithm will
manage on the shop-floor shows that our algorithm
can identify and estimate the orientation of objects
on a plane surface in most situations. As the above
analysis and experiments show we can handle the 3D
scenes (uite well with our basically 2D algorithm, if
we just mount the camera appropriately for the task.

The fact that our method is highly automated and
general in the learning of the object, will make it easy
to use on the shop-floor.
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