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Abstract 

This paper diacusses the  problem of extracting curves, such 
as lines, circlea and ellipses, from 2D edge data. Our pra- 
posed extraction algorithm operates by taking random Barn- 
ples of minima! sitbsets, and thcn matching the curvc through 
each minimal s u b ~ e t  against the edge data.  We perform 
the time-critical curve matching step using a new approach 
based on incremental curve generation dgarithrna. These al- 
gorithms have been used previol~sly in thecomputer-graphics 
field, brlt never, t o  our knowledge, For th ia  purpase. This 
simple idea  ha^ the potential to make real-time curve ex- 
traction possible using very inexpenfiive hardware. It has a 
number of advantages over the Hough transform, which is 
the most common method of extracting curves. 

1 Introduction 

Primitive extraction is the procesa of finding geometric prim- 
itives in sensor data. h g o m ~ t r i c  primitive is a curve or 
surface which ha an associated equation, such as a line, 
circle, plane, et t .  Extraction of geometric primitives i~ an 
important task in model-based vision. Reccntly a number 
of new algorithms have been proposed t o  perform this task 
11, 21. Tbc most cornputationally expensive step in these 
approaches matches a potential gromettic primitive against 
tlre genaor data, This matching: proces~ returns the numbcr 
of points within a small template centered on the primitivc. 
This process is repeated a number of tirneg, and the prirni- 
t i re  with the most points is retrirned. 

In this paper we describe a new way of performing this 
matching when the primitives arc 2D curvcs, such a* lines, 
circles and ellipses, and the sensor d a t a  consi~ts  of points 
on a 2D array. Such data are produced hy the standard 
processing of an intensity i m a g  using edge detection, Fol- 
lowed by thresholding t o  prorluce a binary e d ~ c  map [R]. 
Our idca i a  t o  match pot~nt ia l  curves against 1 he 2D edge 
d a t a  by using an incremental cilrve generation algorithm. 
Such algorithms are widely used for drawing 2D curves on 
the screens of graphic displays [4]. More preciscIy, the input 
t o  our matching routine is the equation or the  curve, and an 
array containing the 2D c d ~ e  points. The curve generation 
routines then p roduc~s  the addrcssea of each point an the  
curve. This is done by moving along t t ~ e  curve from point 
t o  point in a very eficient manner. instead of drawing the 
curve, WP propose to simply count the number of edge points 
that are a l~e  curve points. This count represents IIOW well 
t h ~  2Il curve rnatci~~s the 2D edge data. 

The time taken t o  accomplish the matching in this way 
depends only on the number of points on the 2 D  crrrve, 
which is independent of the total number oi c d g  points. 
This means that the matching time will not i n c r c m  with 
an increme in the number of e t i g  points. The cirrrcnt VLSI 
implementations of these incremental curve gen~ration dgw 
rit bms which are used for drawing curves. can also he used 
For matching curves [4]. Such VLSI irnplcmentations could 
match in the order of thousands of curvcs per second. At 
this rate r e d  time extraction of 2D curves would he possible 
using very inexpensive hardware. 

2 Hough Transform 

T ~ P  most wideIy used approach to extracting ctrrvps is the 
IIough transform ( A T )  151. To make a r e ~ o n a b l r  rompar- 
ison of our method t o  the IIT some understanding of Itow 
it operates is necessary. The  basic principle or oprration is 
tha t  each edge point votes For all parameter combinations 
tha t  could have produced it 131. This voting process requires 
tha t  the  parameter apace be partitioned into ccIls [usually 
rectangular) by quantizing each of the dimensions of tbis 
space. Then each e d g ~  point adds a singlp vote to all t h ~  
cells whose combination of parameters could have prodrtc~d 
a gmmetric primitive through tha t  point. 

An individual cell in parameter space thus describes the 
edge pointa covered by dl the gcomct ric prirnitivcs whose 
parameter vectors are contained in thc cell. These points 
taken together define a template of the same approximate 
shape as the curve, whose sizr is determined hy 1 1 1 ~  cell s i z ~ .  
When this template is applied to the data it returns the 
same wt of points tha t  voted for this cell in the standard 
HT algorikhrn. This shows that the IIT i s  simply a tirnr- 
efficient, but space-inefficient way t o  do template matching 
161. Assume that  there are N edge points. Then for M E ~ I  of 
these point6 tlrp voting process milat mark the appropriate 
cells in parameter space. Thus, the  excctltion t i m ~  of the 
H T  is clearly proportiond t o  N ,  liir nllrnbcr o r  P ~ R F  points. 

The relationship of the  IIT to template matching rnakrs 
the  limitationa or the approach clear. Thc first problem is 
tha t  the template produced by a cell dcpcnds on tlrc pa- 
rameterization of the geometric primitivc, on tlia rrlE slixpe 
and on the cell size. It was observed that direrent parame- 
terization~ change the template shape. Any rcctangi~lar cell 
produces some distortion in the template shapc r ~ l a i i v ~  t o  
the ideal situation, which is t o  reproduce exactly ttir same 
shape as the  gcometrtc primitive. When extracting: lines 
this distortion was lessened 't~y using the (p, 8 )  parameteri- 
zation instead of the usual slope-intercept paramct~rixation 



171. The second problem is tha t  the size o l  parameter space 
is exponential in the  degrees of freedom of the primitive. 
T h i ~  mean5 in practice, the IJT i s  uaed for curves with only 
t w o - d g r w  of freedom. The liT ifi commonly used t o  ex- 
tract tines, and how to apply it t o  more complex curves such 
as circles and eilip~es, is still an open question [R]. 

The  exponential storage requirements and distortions in 
template shape ace problems that are unavoidable when ua- 
ing ttre HT. The relation between the [IT and template 
matching makes it clear that them !imitations arc intrin- 
sic and cannot be O V P F C O ~ P .  T ~ P  uw or ~lol)al  memory by 
the FIT alm makes it difficult to run ~f ic ient ly  on parallel 
hardware 191. 'CVe claim that primitive extraction based on 
incremental curve ~ e n ~ r a t i o n  avoids these difirulties. It can 
be used directly b r  extracting lines, along with more tom- 
plex rurvfs such as circles and ellipses. It can also be easily 
parallelized using inexpensive VLSI drawing hardware. 

3 Random Sampling for Extraction 

Our extraction algorithm i s  based on the idea of random 
sampling. This idea w w  introduced in the cornputpr vision 
field by the  RANSAC method [lo], and was aha indepen- 
dently discovered in the robust statistics field [ l l .  121. The 
principle of this algorithm is tha t  oltcn smaH set of points on 
a curve i~ a good reprcwntation of the entire curve. This is 
trivially true for p~r iec t ly  accurate da ta ,  and is less true as 
r he accuracy decreases. Thus, lor thir method to be applica- 
ble the data  should be reasonably accurate. Ry reasonable, 
we mean tha t  the  avcragc error in the 2D cdge data should 
not be more than a Tew picture elements. 

A minimal subset is the smallest set of point5 ncressary 
to define s unique instance of a curve. For a line a minimal 
subset 1 1 s  two points, ~ i n c c  onp point underconstrains a line, 
and three points over-constrains it. Similarly, the size of a 
minimal subset for a circle Is three points, and Tar an ellipse 
is five points. It is clear that a curve passes through the 
points in a minimal subset exactly, with no crrar of fit. 

In a key paper on the use of the IIT for line extraction 
the sup;g~stion was made tha t  an alternative approach waa 
to exhaustively match all possibh lines through two edge 
points [TI. This was quickly discarded as being impractical, 
because of the  large number of potential matches. IF there 
are P edge points, and a minimal subwt has  R points, then 
there are (!) possible minimal subsets. Jlowevcr, what was 
overlooked was that  for accurate da ta  many a l t h ~ s e  minimal 
subsets define the same curve, and are t h u ~  rerl~tndanl. Thus 
il e n n u ~ h  minimd s u h s e t ~  arp chosen at random, then in 
many circumstances far fewer than (E) will be necwsary t o  
have dl the minimal ~ u h s e t  points on a R ~ I I ~ ~ P  curve. 

The p s e u d ~ c o d e  for the random sampling algorithm based 
on minimal ~ u b s e t s  i~ below. The input is the curve defini- 
tion, the  ZD edge points, the number of pointa in a minimal 
suhs~t  ( R ) ,  and the  total number of minimal s ~ t h w t s  (K). 

For K randomly rhos~n sets of R points 

I. Find the parameter vwtor of the  curw rhmugh the 
minimal so bs~l points. 

2. Match t h i s   FUN^ against the edgp points. 
3. Save the curve that mrrtchcs the nrost e d g p  points. 

After completion o l  the algorithm the curve containing 
the most edge points is returned. Dy simply removing these 
matched points, and r~pea t ing  the process with the remain- 
ing edge points, all the curveR can be Found. As we have 
skated, the reason for the  effectiveness of this procesa is that 
for many eases X, the number of minimal rubseta neces- 
sary for successful extractions is Far I a r  than the maximum 
pmsible value. 

The value of K that  is usdl depends on Y, the  minimum 
~xpected  number or points on a single curve. Let c be the 
probability tha t  a single randomly drawn point out or the N 
edge points is one of the Y points on the desired curve. The 
value of r is then equal t o  Y / N .  The probability ofall  of R 
randomly drawn points of a single minimal subset b ~ i n g  on 
the curve is thpreiore f R .  Let s be h e  probability tha t  at 
beast one of the li minimal subsets has all its R points on 
this CUTYC. Then s m a function o f f ,  R,  and K is: 

This formula is a simple application of cornbinatorid analy. 
sis and the  earne result has been presented elsewhere I1 E, 101. 
The  value of K aa a function r ,  s, and R in: 

If we wish t o  have a high confidence of successtul extraction 
then a is set to a lasgc value (ueudIy .95). The above q u a -  
tion is then used to set t h ~  value of K accordingly. However, 
thia ia the worst case value for K ;  the expected value, which 
is more realistic, can be found by wtting s equal to .5. 

Essentially r, and therefore K, is an implicit estimate of 
the maximum number oT possible curvpa of thir type in  he 
c d ~ c  data, which is I/c. For example, if r takes on the values 
of -5,  .2 and .1, then this wsumes tha t  then! are at most two, 
five and ken curves present. Of courne h e r e  may be fewer 
than this number d curves, since this estimate is an upper 
bound. What is surprising is that for many d u e s  of r the  
d u e  OF A' is not excwsive. This is demonetrated in Tabte 1 
which lists the required K t o  reach 95% and 50% confidence 
OI EIICCPSS (J = .95 and s = .53 Tor the cmes where r is .5,.2 
and .l. For example, it there are ten linea present ( r  is . 1 )  
then on the average wventy minima1 subsets are sufficient 
lor auccc~sful extraction. That so f ~ w  minimal subsets are 
requircd in many situation5 is ~urptising. The explanation 
ia tha t  the value of K  exhibit^ a definite thrmhold effect, in- 
creasing rapidly t o  the maximum vahe  onty for small values 
or t. 

IIOWPVP~, K is an exponential function or R,  the aim of 
a minimal subset. When K i s  two, three and five, the asac- 
ciated curves are linm, circles and dlipwn. From Table E we 
sce tha t  Tor each incwase i n  R. there is a sipifi tant i n c r e w  
in K.  Thus it is not practical t o  use this method when there 
are ten ellipses, but it is ptaclicd for fire ellipses, ten lines, 
or ten circIes, For complex curves such as circles and ellipses 
there are often conatrainte that make i t  unnrcessary t o  ac- 
tually match each of these K curves againnt the p d ~ e  points. 
For example, in circle extraction the radius o i the  circle to be 
round often has an upper bound. Then i f the circle defined 
by a minimal ~ u b s e t  does not meet lhis constraint, it is not 
a potential solution, and need not be matched a~ainst thr  
e d ~ e  data. This i n c r e m  the number of curves detinrd by 
minimal subsets tha t  can be enluated in a g i v ~ n  limp, since 



Table I :  The number of t r ids  h' for 95% and 511% confidence 
lor various sizes of minimal ~ubse t s  and various fractions of 
the total points on a single curve. 

Roction Point8 E 

.5 

.5 

.5 
-2 
.2 
.2 
.1 
.1 
.1 

the most expensive computational step in the algorithm is 
matching thew curves. Therefore far complex curves extrac- 
tion is R r  ill practical even for fairly l a r g  values or IC. 

4 Incremental Curve Generation 

Minimal Sub8ef R 
I 

2 
3 
5 
2 
3 
5 
2 
3 
5 

T ~ P  main drawback of this method of primitive extraction 
is the execution time. which is often excessive. The reason 
i* not that the required K is excessive, since the previous 
section show8 that h' is often reasonably sized. The problem 
is the amount of time taken t a  match each curve againat the 
edge points. This matching proresfi return* the number of 
points within a small ternpiate centered on the curve. The 
more point& there are then the more likely that this curve is 
valid. For curve extraction from 2D edge data  this distance 
is set in the range of one to four pix~ is .  

Thc obvious way t o  match a curve is to  compute the 
distance af each of the .hr edge points kern the curve, and 
then to count the number of points that are close enough. 
Ilowever, IV is often in the order of a Few tliousand edge 
points, which makes the matching time excessive. While this  
time can be decreased using parallel hardware, we would like 
a simpler way or achieving thia goal. We do this by using 
incremental curve generation routines to compute the list 
of points on t h ~  C I I ~ V P .  S I I C ~  r o t ~ t i n e ~  generate t h ~  curve 
pointn incwmen~ally, hy moving from one point on the curve 
to another. using only simple integer operations. They are 
widely used for drawing lines, cirrles, parabolas and ellipses 
on graphics w r e n 5  113, 141. Two examples of t h ~ i r  output 
are shown in Figure 1. 

Oar idea is t o  perform the t~ rnp la t e  matching hy using 

Fi~l l re  1: Itesults of incremental curve generation (a) Picture 
~lcments  for a line (c)  Picture elements Tor an arc of a circle. 

Ntrmbpr Trial$ h' such incremental curvp ~ ~ n ~ r a t i o n  routines. Instead of draw- 
ing the points on the crrrve we simply count the number of 
edge points thai are also curve points. This prod~icps the 
same result as counting the number of ~ d g  points within 
a given distance of the curve. However, t t i ~  time t a k ~ n  Tor 
this new approach is proportional to t h ~  nnrnb~r or points 
on the gemrated curve. This makes the match in^ time in- 
depend~nt  or N ,  the number of edge points, Ily contrhqt, 
the direct iorm ot  curve matching has a ri~nning time prm 
portional t o  N. Since, as we stated above, P is aftrn in 
the order of thousands, while thc number of curve points is 
in the order of hundreds, llle difTercncc is significant. Our 
experience is that with thia type of curve matching the exe- 
cution time of the random sampling ~xtrar t ion algarilhni is 
d ~ c r e n s d  by an ordrr OF magnitude. 

This type of curve matrhing can br used dirrrtly for 
the extraction of lines, circles, and ellipses since thcrc exist 
eficient incremental drawing rou t in~s  for t h ~ s c  curves, [14]. 
In principle the same method can be used to match any 
curve defined by an implicit equation [IS]. On ordinary serial 
processors in the order of a hilndr~ds of C U ~ V P S  a swond can 
be matched. However, w h ~ n  implcrncntcd in inexpensive 
VCSP hardware 141, a rate of several thousand matches a 
second is feasible. If such VLSl hardware is availatllr then 
it should he posfiible 10 extract ctlrves such = l i n~s .  and 
circles. in real-time. 
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5 Experimental Results 
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In this section we will show some ~xprr i rncntd  results Tor 
tine and circle extraction. The images were chosen to be 
typical curve extraction examples that  t m v ~  also bwn rlscd 
in  other papers [Z]. The first e x a m p l ~  demonstrates line ex- 
traction. The original edge points aresl~own i r k  parts (a) and 
(c)  of Figure 2. Part ( a )  shows the edge points for a garbage 
can, while part (c) shows the e d ~ e  points for a nr~niber o l  
ceiling tiles. The extract~t l  lines arc sliowi~ ir! parts (h) and 
(d). In both cases the extracted ciitves are drawn in dark 
black, and are st~perimposed o n  the edge points. The exe- 
cution time for part (a)  was 3 seconds. and lor part (c) was 
4 seconds, and both examples ran on a Macintosh 11x. 

The second example will demonstrate circle extraction. 
The original e d g  poitits are shown in parts (a) and (c)  of 
Fimre 3. Patt  (a) shows the edge points far a number of 
r ing,  while part (c) shows the edge points for a number of 
coins. The extracted circles are shown in parts ( h )  and (d). 
Again the extracted curves are drawn in dark black, and are 
superimposed on t h ~  edge points. T l ~ c  execution lime for 
part (a) was 3 seconda, and lor part (c) was 15 seconds, and 
both examples ran on a Macintosh IIx. 

6 Discussions and Conclusion 

U'e have described a method of curve extractinn in 2D ~ c l c e  
da ta  that operates by creating curves throltgh rantlorn sam- 
ples of minimal subsets, a n d  then matching r hpsp curves 
against !.he edge data.  Doing the c l i rv~  matching try incrc- 
mental curve generation substantially decreaws ~ I I P  PXPCU- 

tion time of this method. I t  makes the entire extraction 
process independent of A', the total numbrr of pdgp points, 
and dependent only on the number of points on the  curve. 



This approa~h is able t o  extract a wider variety of curves 
than the  l1011gh t r an~ la rm (AT], and has the potential to be 
implemented eficiently uaing very inexpensive YLSI hard- 
warp [4]. The IIT finds all r h ~  curves, while this appmarh 
finds only one curve at a time. This means that thin ex- 
traction procedure r n t ~ ~ t  be applied repeatedly to find all 
the curvea. However, aa long as the total number of curvea 
i~ in the  order of a dozen, t h e  rnelhod iti practical. We 
alse require that the e d ~ e  data he resonably  accurate. For 
many model- baed vision tasks these two hgsumptiona hold. 
Any curve that has a defining equation can potentially he 
matched by such incremental curve generation routines 1151. 
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