MVA ‘92

IAPR Workshop on Machine Vision Applications Dec. 7-9,1992,

Tokyo

Primitive Extraction Using Incremental Curve Generation

Gerhard Roth

Laboratory for Intelligent Systems
National Research Council of Canada
Ottawa, Canada K1A OR6

roth@iit.nrc.ca

Abstract

This paper discusses the problem of extracting curves, such
as lines, circles and ellipses, from 2D edge data. Our pro-
posed extraction algorithm operates by taking random sam-
ples of minimal subsets, and then matching the curve through
each minimal subset against the edge data. We perform
the time-critical curve matching step using a new approach
based on incremental curve generation algorithms. These al-
gorithms have been used previously in the computer-graphics
field, but never, to our knowledge, for this purpose. This
simple idea has the potential to make real-time curve ex-
traction possible using very inexpensive hardware. It has a
number of advantages over the Hough transform, which is
the most common method of extracting curves.

1 Introduction

Primitive extraction is the process of finding geometric prim-
itives in sensor data. A geometric primitive is a curve or
surface which has an associated equation, such as a line,
circle, plane, etc. Extraction of geometric primitives is an
important task in model-based vision. Recently a number
of new algorithms have been proposed to perform this task
[1, 2]. The most computationally expensive step in these
approaches matches a potential geometric primitive against
the sensor data. This matching process returns the number
of points within a small template centered on the primitive.
This process is repeated a number of times, and the primi-
tive with the most points is returned.

In this paper we describe a new way of performing this
matching when the primitives are 2D curves, such as lines,
circles and ellipses, and the sensor data consists of points
on a 2D array. Such data are produced by the standard
processing of an intensity image using edge detection, fol-
lowed by thresholding to produce a binary edge map [3].
Our idea is to match potential curves against the 2D edge
data by using an incremental curve generation algorithm,
Such algorithms are widely used for drawing 2D curves on
the screens of graphic displays [4]. More precisely, the input
to our matching routine is the equation of the curve, and an
array containing the 2D edge points. The curve generation
routines then produces the addresses of each point on the
curve, This is done by moving along the curve from point
to point in a very efficient manner. Instead of drawing the
curve, we propose to simply count the number of edge points
that are also curve points. This count represents how well
the 2D curve matches the 2D edge data.

411

The time taken to accomplish the matching in this way
depends only on the number of points on the 2D curve,
which is independent of the total number of edge points.
This means that the matching time will not increase with
an increase in the number of edge points. The current VLSI
implementations of these incremental curve generation algo-
rithms which are used for drawing curves, can also be used
for matching curves [4]. Such VLSI implementations could
match in the order of thousands of curves per second. At
this rate real time extraction of 2D curves would be possible
using very inexpensive hardware.

2 Hough Transform

The most widely used approach to extracting curves is the
Hough transform (HT) [5]. To make a reasonable compar-
ison of our method to the HT some understanding of how
it operates is necessary. The basic principle of operation is
that each edge point votes for all parameter combinations
that could have produced it [3]. This voting process requires
that the parameter space be partitioned into cells (usually
rectangular) by quantizing each of the dimensions of this
space. Then each edge point adds a single vote to all the
cells whose combination of parameters could have produced
a geometric primitive through that point.

An individual cell in parameter space thus describes the
edge points covered by all the geometric primitives whose
parameter vectors are contained in the cell. These points
taken together define a template of the same approximate
shape as the curve, whose size is determined by the cell size.
When this template is applied to the data it returns the
same set of points that voted for this cell in the standard
HT algorithm. This shows that the HT is simply a time-
efficient, but space-inefficient way to do template matching
[6]. Assume that there are N edge points. Then for each of
these points the voting process must mark the appropriate
cells in parameter space. Thus, the execution time of the
HT is clearly proportional to N, the number of edge points.

The relationship of the HT to template matching makes
the limitations of the approach clear. The first problem is
that the template produced by a cell depends on the pa-
rameterization of the geometric primitive, on the cell shape
and on the cell size. It was observed that different parame-
terizations change the template shape. Any rectangular cell
produces some distortion in the template shape relative to
the ideal situation, which is to reproduce exactly the same
shape as the geometric primitive. When extracting lines
this distortion was lessened by using the (p,#) parameteri-
zation instead of the usual slope-intercept parameterization

[7]. The second problem is that the size of parameter space
is exponential in the degrees of freedom of the primitive.
This means in practice, the HT is used for curves with only
two-degrees of freedom. The HT is commonly used to ex-
tract lines, and how to apply it to more complex curves such
as circles and ellipses, is still an open question [8].

The exponential storage requirements and distortions in
template shape are problems that are unavoidable when us-
ing the HT. The relation between the HT and template
matching makes it clear that these limitations are intrin-
sic and cannot be overcome. The use of global memory by
the HT also makes it difficult to run efficiently on parallel
hardware [9]. We claim that primitive extraction based on
incremental curve generation avoids these difficulties. It can
be used directly for extracting lines, along with more com-
plex curves such as circles and ellipses. It can also be easily
parallelized using inexpensive VLSI drawing hardware.

3 Random Sampling for Extraction

Our extraction algorithm is based on the idea of random
sampling. This idea was introduced in the computer vision
field by the RANSAC method [10], and was also indepen-
dently discovered in the robust statistics field [11, 12]. The
principle of this algorithm is that often small set of points on
a curve is a good representation of the entire curve, This is
trivially true for perfectly accurate data, and is less true as
the accuracy decreases. Thus, for this method to be applica-
ble the data should be reasonably accurate. By reasonable,
we mean that the average error in the 2D edge data should
not be more than a few picture elements.

A minimal subset is the smallest set of points necessary
to define a unique instance of a curve, For a line a minimal
subset has two points, since one point underconstrains a line,
and three points over-constrains it. Similarly, the size of a
minimal subset for a circle is three points, and for an ellipse
is five points. It is clear that a curve passes through the
points in a minimal subset exactly, with no error of fit.

In a key paper on the use of the HT for line extraction
the suggestion was made that an alternative approach was
to exhaustively match all possible lines through two edge
points (7). This was quickly discarded as being impractical,
because of the large number of potential matches. If there
are N edge points, and a minimal subset has R points, then
there are (NR) possible minimal subsets. However, what was
overlooked was that for accurate data many of these minimal
subsets define the same curve, and are thus redundant. Thus
il enough minimal subsets are chosen at random, then in
many circumstances far fewer than {ﬁ) will be necessary to
have all the minimal subset points on a single curve.

The pseudo-code for the random sampling algorithm based
on minimal subsets is below. The input is the curve defini-
tion, the 2D edge points, the number of points in a minimal
subset (), and the total number of minimal subsets (K).

For K randomly chosen sets of R points

1. Find the parameter vector of the curve through the
minimal subset points.

2. Match this curve against the edge points.
3. Save the curve that matches the most edge points.

412

After completion of the algorithm the curve containing
the most edge points is returned. By simply removing these
matched points, and repeating the process with the remain-
ing edge points, all the curves can be found. As we have
stated, the reason for the effectiveness of this process is that
for many cases K, the number of minimal subsets neces-
sary for successful extractions is far less than the maximum
possible value.

The value of K that is used depends on Y, the minimum
expected number of points on a single curve. Let ¢ be the
probability that a single randomly drawn point out of the N
edge points is one of the Y points on the desired curve, The
value of ¢ is then equal to Y/N. The probability of all of R
randomly drawn points of a single minimal subset being on
the curve is therefore ¢®, Let s be the probability that at
least one of the K minimal subsets has all its R points on
this curve. Then s as a function of ¢, R, and K is:

s=1-(1-¢fK (1)

This formula is a simple application of combinatorial analy-
sis and the same result has been presented elsewhere [11, 10].
The value of K as a function ¢, s, and R is:

_In(1-s)
e Vi @
If we wish to have a high confidence of successful extraction
then s is set to a large value (usually .95). The above equa-
tion is then used to set the value of K accordingly. However,
this is the worst case value for K'; the expected value, which
is more realistic, can be found by setting s equal to .5.

Essentially ¢, and therefore K, is an implicit estimate of
the maximum number of possible curves of this type in the
edge data, which is 1 /¢, For example, if ¢ takes on the values
of .5,.2and .1, then this assumes that there are at most two,
five and ten curves present. Of course there may be fewer
than this number of curves, since this estimate is an upper
bound. What is surprising is that for many values of ¢ the
value of K is not excessive. This is demonstrated in Table 1
which lists the required K to reach 95% and 50% confidence
of success (s = .95 and s = .5) for the cases where ¢ is .5,.2
and .1. For example, if there are ten lines present (¢ is .1)
then on the average seventy minimal subsets are sufficient
for successful extraction. That so few minimal subsets are
required in many situations is surprising. The explanation
is that the value of K exhibits a definite threshold effect, in-
creasing rapidly to the maximum value only for small values
of e.

However, K is an exponential function of R, the size of
a minimal subset. When K is two, three and five, the asso-
ciated curves are lines, circles and ellipses. From Table 1 we
see that for each increase in R, there is a significant increase
in K. Thus it is not practical to use this method when there
are ten ellipses, but it is practical for five ellipses, ten lines,
or ten circles. For complex curves such as circles and ellipses
there are often constraints that make it unnecessary to ac-
tually match each of these K curves against the edge points.
For example, in circle extraction the radius of the circle to be
found often has an upper bound. Then if the circle defined
by a minimal subset does not meet this constraint, it is not
a potential solution, and need not be matched against the
edge data. This increases the number of curves defined by
minimal subsets that can be evaluated in a given time, since

Fraction Points ¢ | Minimal Subset R | Number Trials K
§=.95| s=.50
D 2 11 3
5 3 23 6
S 5 95 23
2 2 74 18
2 3 374 87
2 5 9361 2167
.1 2 299 70
S 3 2995 694
A 5 209573 | 69315

Table 1: The number of trials K for 95% and 50% confidence
for various sizes of minimal subsets and various fractions of
the total points on a single curve,

the most expensive computational step in the algorithm is
matching these curves. Therefore for complex curves extrac-
tion is still practical even for fairly large values of K.

4 Incremental Curve Generation

The main drawback of this method of primitive extraction
is the execution time, which is often excessive. The reason
is not that the required K is excessive, since the previous
section shows that K is often reasonably sized. The problem
is the amount of time taken to match each curve against the
edge points. This matching process returns the number of
points within a small template centered on the curve. The
more points there are then the more likely that this curve is
valid. For curve extraction from 2D edge data this distance
is set in the range of one to four pixels.

The obvious way to match a curve is to compute the
distance of each of the N edge points from the curve, and
then to count the number of points that are close enough.
However, N is often in the order of a few thousand edge
points, which makes the matching time excessive. While this
time can be decreased using parallel hardware, we would like
a simpler way of achieving this goal. We do this by using
incremental curve generation routines to compute the list
of points on the curve. Such routines generate the curve
points incrementally, by moving from one point on the curve
to another, using only simple integer operations. They are
widely used for drawing lines, circles, parabolas and ellipses
on graphics screens [13, 14]. Two examples of their output
are shown in Figure 1.

Our idea is to perform the template matching by using

(a) (b)

Figure 1: Results of incremental curve generation (a) Picture
elements for a line (c) Picture elements for an arc of a circle.

413

such incremental curve generation routines. Instead of draw-
ing the points on the curve we simply count the number of
edge points that are also curve points. This produces the
same result as counting the number of edge points within
a given distance of the curve. However, the time taken for
this new approach is proportional to the number of points
on the generated curve. This makes the matching time in-
dependent of N, the number of edge points. By contrast,
the direct form of curve matching has a running time pro-
portional to N. Since, as we stated above, N is often in
the order of thousands, while the number of curve points is
in the order of hundreds, the difference is significant. Our
experience is that with this type of curve matching the exe-
cution time of the random sampling extraction algorithm is
decreased by an order of magnitude,

This type of curve matching can be used directly for
the extraction of lines, circles, and ellipses since there exist
efficient incremental drawing routines for these curves, [14].
In principle the same method can be used to match any
curve defined by an implicit equation [15]. On ordinary serial
processors in the order of a hundreds of curves a second can
be matched. However, when implemented in inexpensive
VLSI hardware [4], a rate of several thousand matches a
second is feasible. If such VLSI hardware is available then
it should be possible to extract curves such as lines, and
circles, in real-time.

5 Experimental Results

In this section we will show some experimental results for
line and circle extraction. The images were chosen to be
typical curve extraction examples that have also been used
in other papers [2]. The first example demonstrates line ex-
traction. The original edge points are shown in parts (a) and
(c) of Figure 2. Part (a) shows the edge points for a garbage
can, while part (c) shows the edge points for a number of
ceiling tiles. The extracted lines are shown in parts (b) and
(d). In both cases the extracted curves are drawn in dark
black, and are superimposed on the edge points. The exe-
cution time for part (a) was 3 seconds, and for part (¢) was
4 seconds, and both examples ran on a Macintosh Ilx.

The second example will demonstrate circle extraction.
The original edge points are shown in parts (a) and (c) of
Figure 3. Part (a) shows the edge points for a number of
rings, while part (c) shows the edge points for a number of
coins. The extracted circles are shown in parts (b) and (d).
Again the extracted curves are drawn in dark black, and are
superimposed on the edge points. The execution time for
part (a) was 3 seconds, and for part (¢) was 15 seconds, and
both examples ran on a Macintosh IIx.

6 Discussions and Conclusion

We have described a method of curve extraction in 2D edge
data that operates by creating curves through random sam-
ples of minimal subsets, and then matching these curves
against the edge data, Doing the curve matching by incre-
mental curve generation substantially decreases the execu-
tion time of this method. It makes the entire extraction
process independent of NV, the total number of edge points,
and dependent only on the number of points on the curve.

L]~

Figure 2: Extracting Lines (a) Edge Points for Garbage Can
(b) Extracted Lines drawn in black (c) Edge Points for Ceil-
ing (d) Extracted Lines drawn in black

(b)

(i

(d)

X0
9

(¢)

Figure 3: Extracting Circles (a) Edge Points for Rings (b)
Extracted Circles draw in black (c) Edge Points for Coins
(d) Extracted Circles drawn in black

414

This approach is able to extract a wider variety of curves
than the Hough transform (HT), and has the potential to be
implemented efficiently using very inexpensive VLSI hard-
ware [4]. The HT finds all the curves, while this approach
finds only one curve at a time. This means that this ex-
traction procedure must be applied repeatedly to find all
the curves. However, as long as the total number of curves
is in the order of a dozen, the method is practical. We
also require that the edge data be reasonably accurate. For
many model-based vision tasks these two assumptions hold.
Any curve that has a defining equation can potentially be
matched by such incremental curve generation routines [15).

References

[1] G. Roth and M. D. Levine, “Random sampling for primitive
extraction,” in International Workshop on Robust Computer
Vision, (Seattle, Washington), Oct, 1990,

[2] G. Roth and M. D. Levine, “A genetic algorithm for prim-
itive extraction,” in Proceedings of the Fourth International
Conference on Genetic Algorithms, (San Diego), pp. 487-404,
July 1991.

[3] D. Ballard and C. Brown, Compuler vision. Prentice Hall,
1982,

[4] M. Asal, G. Short, T. Preston, R. Simpson, D. Roskell,
and K. Guttag, “The texas instruments 34010 graphics sys-
tem processor,” [EEE Computer Graphics and Applications,
vol. 6, pp. 24-39, Oct. 1986.

[5] J. Ilingworth and J. Kittler, “A survey of the hough trans-
form,” Computer Vision, Graphics and Image Processing,
vol. 44, pp. B7-116, 1988,

[6] G. C. Stockman and A. K. Agrawala, “Equivalence of hough
transform to template matching,” Communications of the
ACM, vol. 20, pp. 820-822, 1977.

R. O. Duda and P. E. Hart, “The use of the hough transform
to detect lines and curves in pictures,” Communicafions of
the ACM, vol. 15, pp. 11-15, 1871,

H. K. Yuen, J. Princen, J. lllingworth, and J. Kittler, “Com-
partive study of the hough transform methods for circle find-
ing,” Image and Vision Computing, vol. 8, pp. T1-77, Feb.
1990.

A. Rosenfeld, J. O. Jr., and Y. Hung, “Hough transform al-
gorithms for mesh-connected simd parallel processors,” Com-
puler vision, graphics and 1mage processing, vol. 41, pp. 293~
305, Mar. 1988.

M. A. Fischler and R. C. Bolles, “Random sample consen-
sus," Communicalions of the ACM, vol. 24, pp. 381-395,
June 1981,

[11] P.J. Rousseeuw and A. M. Leroy, Robust regression and out-
her detection. Wiley, 1987.

[12] P. Meer, D. Mintz, A. Rosenfeld, and D. Y. Kim, “Robust
regression methods in computer vision: a review,” Inferna-
tional Journal of Computer Vision, vol. 6, no. 1, pp. 59-70,
1091.

[13] J. E. Bresenham, “Algorithm for computer control of a digital
plotter,” IBM Systems Journal, vol. 4, no. 1, pp. 25-30, 1965.

[14] G. Hegron, fmage Synthesis. Cambridge, Mass,: MIT Press,
1988.

[15] R. E. Chandler, “A tracking algorithm for implictely defined
curves,” IEEE Computer Graphcs and Applications, pp. 83-
B89, Mar. 1988.

]

8]

(9]

(10]

