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Abstract 

This paper presents a method to compute Mean 
and Gaussian curvatures from range images. The  
first and second partial derivatives are estimated by 
the weighted least squares fit of a biquadratic poly- 
nomial within a local moving window. The weights 
arc determined on the basis of surface distances and 
normal angular distances from the center points of 
the window. 

1. Introduction 

In recent years, range image (depth map) p r e  
cessing has become onc of the most important top- 
ics in computer vision research. The main reason is 
that  the quality of the di~it ized range data has been - - 
improved by the developments of active and passive 
range sensing techniqlres (for example, 181). Range 
data provide explicit geometrical information about 
the shape oi visible surfaces. Using this basic infor- 
mation, some ptablems in 3-D object description 
and recognition are easier to solve. Especially, one 
can obtain dense range maps very effectively using 
active range finders. 

Besl and J a ~ n  [I] have proposed an attractive idea 
for surface charactetization from the point of view 
of differential geometry. Mean and Gaussian curva- 
tures (surface curvatures) are invariant under rigid 
transformation. Smooth surfaces are locally charac- 
terized by them and are classified into one of eight 
sutface types using a combination of their signs. 
Thus,  if we could compute local surface curvatures 
accurately, one would Ije able to segment range im- 
ages into several surface regions with similar surface 
types called the topograpl~ic primal sketch [6]. 

Since differential geometry is a theory for smooth 
dinerentiable surfaces, one must take into account 
the fact that  real range images have discontinu- 
ities (depth and orientation) which will influence 
the computation of the cutvatures. In order to pre- 
vent this problem Fan [5] proposed to detect discon- 

tinuities first and then do a local curvature measure 
ment. Yokoya [9] proposed a method which employs 
a selective surface fit. The best local window which 
provides a minimum fitting error among the covec- 
ing windows is selected and is used for curvature 
estimation. 

Boulanger 14 proposed a new smoothing filter for 
range images which is invariant to  viewpoint and is 
capable of preserving depth and orientation discon- 
tinuities. The filter employs two new surface dis- 
tance, one is the length of the minimum trajectory 
joining two points on the surface, and the second 
one is the normal angular distance, which is de- 
fined as the average angular variation of the normal 
vector along the minimum trajectory jointng two 
points on the surface. 

In this paper, the first and second partial deriva- 
tives are determined by the weighted least squares 
fit of a biquadratic polynomial within a local mov- 
ing window based on these distances. The present 
weighting method assigns smdl weights for the 
point8 which are not geometrically compatible with 
the center point of the window. Thus, the deriva- 
tives are estimated mostly based on the points 
which are compatible with the center point. Since 
the distances across a discontinuity are large, small 
weights are assigned to points which are on the 
other side of that discontinuity. Then, surface cur- 
vatures are computed from these derivatives accord- 
ing to the definitions. 

In section 2, we review the concept of intrinsic 
surface distance and normal angular distance. Then 
an algorithm to compute these distances within a 
window is presented. In section 3, we show how to 
use these distances to do a weighted least squares 
fit. In section 4, we show experimental results of 
Mean and Gaussian curvature computation using 
our method and then compare it with the results 
produced by a non-weighted least squares met had. 



2. Surface and Normal Angular Dis- small, one can approximate the curve by a linear 

tance equation of the form 

In this section, we will brieffy review concepts a(t) = ( ~ ( l i ) + a i  ( f - t i ] ,  y ( t i )+b,  (t-ti) ,  z(Ei)+ci(t-ii)), 

of differential geometry (41, and then define the n e  l l - = ( l ~ l  
(6) 

tion of intrinsic surface distance and normal angu- where oi = "'" t , + l - f ,  and bi and ci have similar 
lm distance[3]. We will also present an algorithm expressions based a n  y and z. Then the derivative 
t o  compute these distances within a window. ~u'(t) of rr with respect to t is given by 

2.1, Differential Geometry of Range 
Images 

Usually, range data is presented in the form 
of a real matrix r ( x , y ) .  Consider a graph sur- 
face, namely the graph of a differentiable function 
z = h(z ,  y), where ( x ,  y) belong to an open set 
U C R2. Let us parametrize the surface by 

Then the first and second partial derivatives are 

Thua the surface normal a t  the point (x, y) is given 
by 

where A denotes the vector product. 
The Gaussian and mean curvatures are 

2.2. Surface and Normal Angular Dis- 
tances 

Consider a curve a(i) on a surface. The arc 
length s, between two paints p = a( tp)  and g = 
a(i,) along the curve is given by 

Since only the r-values are available on discrete 
points of the (x, y) coordinate for a digitized range 
image, we must have a discrete form of equation (5) 
to compw te the arc length between two points along 
the curve. 

Let us consider a partition of a curve a( t )  defined 
as a( l i ) , t ,  = l o  < t 1  < . . . < 1 k  < 1 1 ~ + ~  = t,. IF the 
steps of the piecewise approximahion are sumciently 

Thus  a discrete approximation of the arc length be- 
tween p and q is given by 

This is equivalent to a polygonal approximation of 
the surface. 

Then the surface distance d s ,  namely the rnini- 
mum distance among all trajectories joining the two 
points, is defined by 

Note that the value of ds will be large if the mini- 
mum trajectory goes across a depth discontinuity. 

However, this distance is not very sensitive to ori- 
en tat ion discontinuity. Therefore, it is necessary t o  
consider another distance which is sensitive to the 
change of surface orientation. The normal angular 
distance is defined as the average angular variation 
of the normal vector along the trajectory joining the 
points p and q by 

(9) 
where N(tp) is the normal vector at 1,. 

From the definition (91, it is obvious that dA ( p ,  q )  
is equal to zero if the normal vector along the tra- 
jectory is constant. If, however, the trajectory goes 
across an orientation discontinuity, the value OF dA 
will be large. Moreover, this measure is also inde- 
pendent to viewpoint. The discrete form of equa- 
tion (9) is given by 

2.3. Algorithm to  Find Minimum Tra- 
jectory 

'Ib obtain surface distances from the center paint 
t o  the other points in a moving window, we need to 
find minimum trajectories from the center point to 



all other points in  the window. From the defini- 
lion (8), we can design an eficicnt algorithm by 
using Single-Source Shortest Paths Algorithm for 
weighted graphs (for example, see [TI). 

The vertices of the  graph corresponrl t o  the 
points in the window and the edges represent neigh- 
boring connections of paints. From the equation 
( 7 ) ,  the arc l cng~h  of the edge hebwcen points 
 ti),  ti)) and ( x ( t i + l ) ,  P I ~ ~ + I ) )  is given by 

The running time of this algorithm is O(( lE[  + 
I Vt)logl Vl), where IEl denotes the number of edges. 

I n  order to compute the normal angular distance, 
we need t o  estimate the surface normal a t  each 
point. In the following experiments, wc used the 
estimates obtained by a least squares fitting of a 
plane within local 3 by 3 windows (for example [3]). 

Once we have estirnatcs of Ihe surface normal, 
the normal angular distance is easily computed by 
tracing the minimum trajectory obtained by the 
previous algorithm. 

3. Mean and Gaussian Curvatures 
Computation 

ln this section, w~ will describe how to compute 
weights From these distances and how lo apply this 
weight function to curvature comput.at,ion. 

3.1. Geometrical Weights 

To aqsign large weights for points which are ge- 
ornetricdly compatible with the center point of the 
window and small weights for points which are not 
compatible, we use Gaussian weights based on the 
surface and normal angular distances. For st1 rface 
distance d s ( p ,  p), the weight w s ( q )  is defined by 

where p is the centcr pcint of the window ard as is 
a scaling parameter. For normal angular dis bance 
d A  (p, q) ,  the wcight zun ( q )  is defined hy 

where UA is also a scaling parameter. 
By combining these two weights, we have 

where p is R parameter to account lor the relative 
importance of the normal angular distance with re- 
spect to the surface distance. 

The present weights haw t.he following attractive 
properties: 

0 The weights are independent of t h e  viewpoint. 
In particular, they preserve local curvature in- 
formation. 

Larger weights are xssi~ned for the points 
which are geometrically more cornpati1,lr: with 
the center point. - The weights are sensitive to both depth and ori- 
entation discontinuities. Thus, small wrights 
are =signed to points which are in the oppo- 
site side of a discontinuity. 

3.2. Surface Fitting 

Once we have the weights, t,he ~ompi r t~a t~on  of 
derivatives is straightforwarcl. I t  is common to fit a 
second-degree surface to an I, by L window centered 
at each point of Ihe range surface, where I, is usu- 
ally odd. To fit a surface, we use the weight.4 !errst 
squares method. The partial derivatives of the fit- 
ting suriace a t  the center of the window are taken as 
the estimates of the partial derivatives of the range 
data at that point.  

Txt t l ip  range image depth values inside t l ~  win- 
dow be denot,ed by h k ,  k =  1, . . . ,  N IN = L 2 )  and 
let the weights of corresponding p0int.s he a k ,  k = 
I , .  . . , N .  Let the fitting second-degree surface he 

The coeficients of the fitt,ing surface arc deter- 
mined such that  the weighted squares error 

is minimized. 
The optimum coeficicnts vector a in given by 

where a = Ini), It = ( h k ) ,  W = d i a g ( ~ ) ~ ) ,  and 

3.3. Mean and Gaussian Curvatures 

The partial derivatives of the fitting surface at 
the center of the window are giver1 by 

hr = az, hy  = a3,- h,, = 2 a 4 ,  h,, = a 5 ,  t i y y  = 2 n s .  
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Figure  1. Mean and Gaussian curva tu rm estirnaled 
by t h e  present a lgo r i thm,  (a) Mean curvatures. (b) 
Gaussian curvatures. 

Figure 2. Mean and Gaussian curvatures estimated 
by the non-weighted least squares fi t t ing. (a) Mean 
curvatures .  (b)  Gaussian curvatures. 

These ate considered as the es t ima tes  of the partial 
derivatives at the object 's  surface point. 

By using these derivatives,  t h e  surface norma l  at 
the point is computed From equat ion (2). The Gaus- 
sian and mean c u r v a t ~ ~ r e s  are atso easily obtained 
from equations (33 and (4). 

4. Experimental Results 

In th i s  sect ion,  we present  exper imenta l  results 
of Mean and Gaussian c u r v a t u r e  cornpu ta t ion and 
compare them w it11 those ob ta ined  by t h e  usual 
method based on  non-weighted least squares .  

Figure1 (a) and (b) are the Mean and Gaussian 
curva tu re  maps estimated by the present  a lgor i thm.  
I n  this computa t ion ,  we lrsed 5 by 5 windows and 
set, t h e  parameters as r = 1.5 and 8 = 20.0. 

Figure2 (a) and (b) show the Mean and Gaus- 
s ian  c t ~ r v a t ~ u r e  maps computed by the usuaI non- 
weighted I m ~ t  squares fitting of a biquadrat ic  poly- 
nomial. The size of t h e  moving window was also 5 
by 5 .  

One can see the improvements  o i  the cu rva tu re  
computa t ion  by using the geometrical  weights,  es- 
pecially n e a r  discontinuities.  

The authors would like to thank M. Rioux, 
L. Cournoyer, and J .  Domey of the National Re- 
search Councit of Canada who kindly provided ac- 
cess to t h e  range image database. 
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